

Let f be a twice-differentiable function defined on the interval $-1.2<x<3.2$ with $f(1)=2$. The graph of f^{\prime}, the derivative of f, is shown above. The graph of f^{\prime} crosses the x-axis at $x=-1$ and $x=3$ and has a horizontal tangent at $x=2$. Let g be the function given by $g(x)=e^{f(x)}$.
(a) Write an equation for the line tangent to the graph of g at $x=1$.
(b) For $-1.2<x<3.2$, find all values of x at which g has a local maximum. Justify your answer.
(c) The second derivative of g is $g^{\prime \prime}(x)=e^{f(x)}\left[\left(f^{\prime}(x)\right)^{2}+f^{\prime \prime}(x)\right]$. Is $g^{\prime \prime}(-1)$ positive, negative or zero? Justify your answer.
(d) Find the average rate of change of g^{\prime}, the derivative of g, over the interval $[1,3]$.

