DATE:

Linearization (Linear Approximation)

Linear Approximation

\rightarrow use of a tangent line at $(a, f(a))$ to approximate some y-value at some x-value.

If f is diff'able at $x=a$, then the equation of the tangent line at $(a, f(a))$ is:

Example 1:

Estimate $f(4.1)$ for $f(x)=\sqrt{x^{2}+9}$.

The function f is twice-differentiable with $f(2)=1, f^{\prime}(2)=4$, and $f^{\prime \prime}(2)=3$. What is the value of the approximation of $f(1.9)$ using the line tangent to the graph of f at $x=2$?

Overapproximation vs. Underapproximation

Is the tangent line approximation an over or under approximation of the actual value?

	f is increasing	f is decreasing
f is concave up		

Conclusion:

Tangent line approximation is an over approximation of the actual value when:

Tangent line approximation is an under approximation of the actual value when:

