

If f is diff able at x = a, then the equation of the tangent line at (a, f(a)) is:

Example 1: Estimate f(4.1) for $f(x) = \sqrt{x^2 + 9}$.

Example 2:

The function *f* is twice-differentiable with f(2) = 1, f'(2) = 4, and f''(2) = 3. What is the value of the approximation of f(1.9) using the line tangent to the graph of *f* at x = 2?

U

Overapproximation vs. Underapproximation

Is the tangent line approximation an over or under approximation of the actual value?

	f is increasing	f is decreasing
f is concave up		
f is concave down		

Conclusion:

Tangent line approximation is an over approximation of the actual value when:

Tangent line approximation is an under approximation of the actual value when:

Example 1:

Is the tangent line approximation for f(4.1) where $f(x) = \sqrt{x^2 + 9}$ an over or under approximation of the actual value of f(4.1)?

Example 2:

The function f is twice-differentiable with f(2) = 1, f'(2) = 4, and f''(2) = 3. Is the approximation of f(1.9) using the line tangent to the graph of f at x = 2 an overestimate or underestimate of f(1.9)?