DATE:
Linearization (Linear Approximation)

Linear Approximation
\rightarrow use of a tangent line at $(a, f(a))$ to approximate some y-value at some x-value.

If f is diff' able at $x=a$, then the equation of the tangent line at $(\underline{a}, f(a))$ is:

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
f(x)-f(a) & =f^{\prime}(a)(x-a) \\
f(x) & \approx f^{\prime}(a)(x-a)+f(a)
\end{aligned}
$$

$\otimes R L(x) \approx \underbrace{f^{\prime}(a)(x-a)+f(a)}$
approxiontes $f(x)$ to be the $L(x)$
the actual y-value@
approwniste y-value @ x.

Example l: $\overbrace{\text { : }}^{\text {Estimate } f(4.1) \text { for } f(x)=\sqrt{x^{2}+9 .}}$
$1 y-y_{1}=m\left(x-x_{1}\right)$
if $f(x)-f(a)=f^{\prime}(a)(x-a)$

- $f(4.1)-f(4)=f^{\prime}(4)(4.1-4)$
$\int f(4.1) \approx f^{\prime}(4)(4.1-4)+f(4)$

$\frac{\approx .8(.1)+5}{}=5(4.1) \approx 5.08$
$a=4$ close to $4 . i$

$$
\begin{aligned}
f(4) & =\sqrt{4^{2}+9} \\
& =5 \\
f(x) & =\left(x^{2}+9\right)^{1 / 2} \\
f^{\prime}(x) & =2 x \cdot \frac{1}{2}\left(x^{2}+9\right)^{-1 / 2} \\
f^{\prime}(4) & =2(4) \cdot \frac{1}{2}\left(4^{2}+9\right)^{-1 / 2} \\
& =4 \cdot \sqrt{25} \\
& =\frac{4}{5}
\end{aligned}
$$

Example 2:
The function f is twice-differentiable with $f(2)=1, f^{\prime}(2)=4$ and $f^{\prime \prime}(2)=3$. What is the value of the approximation of $f(1,9)$ using the line tangent to the graph of f at $x=2$?
$\begin{aligned} y-y_{1} & =m\left(x-x_{1}\right) \\ f(1.9)-f(2) & =f^{\prime}(2)(1.9-2)\end{aligned}$

$$
\begin{aligned}
f(1.9)-f(2) & =f(2)(1.9-2) \\
f(1.9) & \approx f^{\prime}(2)(1.9-2)+f(2) \\
& \approx 4(-.1)+1 \\
& \approx=.4+1
\end{aligned}
$$

Overapproximation vs. Underapproximation
Is the tangent line approximation an over or under approximation of the actual value?

Conclusion:
Tangent line approximation is an over approximation of the actual value when: f is concave down (or $f^{\prime \prime}<0$ or $f^{\prime} d e c$)

Tangent line approximation is an under approximation of the actual value when: f is concave ap (or $f^{\prime \prime}>0$ or f^{\prime} inc)

Example 1:
Is the tangent line approximation for $f(4.1)$ where $f(x)=\sqrt{x^{2}+9}$ an over or under approximation of the actual value of $f(4.1)$?

From do ar:
$f^{\prime}(x)=2 x \cdot \frac{1}{2}\left(x^{2}+9\right)^{-1 / 2}$

$$
=\frac{x}{\left(x^{2}+9\right)^{1 / 2}}
$$

! $f^{\prime \prime}(x)=\frac{\left(x^{2}+9\right)^{1 / 2}(1)-x \cdot 2 x \cdot \frac{1}{2}\left(x^{2}+9\right)^{-1 / 2}}{\left(\left(x^{2}+9\right)^{1 / 2}\right)^{2}}$
 $f(4.11$ is an manduappox:
 of $f(4.1)$ bic $f^{\prime \prime}(4)>0$ I

Example 2:
The function f is twice-differentiable with $f(2)=1, f^{\prime}(2)=4$, and $f^{\prime \prime}(2)=3$. Is the approximation of $f(1.9)$ using the line tangent to the graph of f at $x=2$ an overestimate or underestimate of $f(1.9)$?

$$
f^{\prime \prime}(2)=3>0
$$

\therefore approx of $f(1.9)$ is an underestimate of $f(1.9)$ bile $f^{\prime \prime}(2)>0$

