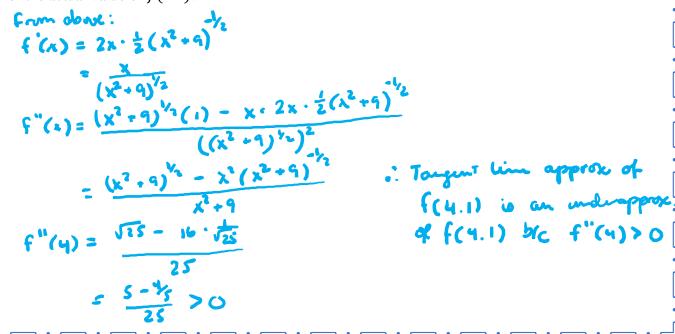


Example 2:	•
The function <i>f</i> is twice-differentiable with $f(2) = 1/f'(2) = 4$ and $f''(2) = 3$. What is the value of the approximation of $f(1.9)$ using the line tangent to the graph of <i>f</i> at $x = 2$?	U
of the approximation of $f(1.9)$ using the line tangent to the graph of f at $x = 2$?	n
$y \cdot y = m(x - x)$	l
of the approximation of $f(1,9)$ using the line tangent to the graph of f at $x = 2$? g = g(x - x) f(1,9) - f(2) = f(2)(1,9 - 2) f(2) = f(2)(1,9 - 2)	•
f(1.9) - f(2) = f(2)(1.9 - 2) $f(1.9) \approx f'(2)(1.9 - 2) + f(2)$ $f(1.9) \approx (-6)$	
f(1.9) 2 f (2)(1.4 2) 4 (24)	•
$f(1.9) \approx f'(2)(1.9-2) + f(2)$ $f(1.9) \approx .6$ $f(1.9) \approx .6$	
≈4+1	•

Overapproximation vs. Underapproximation

Is the tangent line approximation an over or under approximation of the actual value?


Conclusion:

Tangent line approximation is an over approximation of the actual value when: **F** is concare down (or f''<0 or f' dec)

Tangent line approximation is an under approximation of the actual value when: f is concase of cor f">o or f is inc)

Example 1:

Is the tangent line approximation for f(4.1) where $f(x) = \sqrt{x^2 + 9}$ an over or under approximation of the actual value of f(4.1)?

Example 2:

The function f is twice-differentiable with f(2) = 1, f'(2) = 4, and f''(2) = 3. Is the approximation of f(1.9) using the line tangent to the graph of f at x = 2 an overestimate or underestimate of f(1.9)?

f"(2) = 3 >0 .:, approx of f(1.9) is an undrestricte of f(1.9) blc f"(2) >0