Related Rates Problems

- **1.** A kite is 100 ft high. There is 260 ft of string which is being reeled out at the rate of 5 ft/sec. If this results in the kite being carried along horizontally, what is the horizontal speed of the kite?
- 2. Helium is pumped into spherical balloon at the rate of 3π ft³/min. At what rate is the radius increasing when the radius is 3 ft?
- **3.** Helium is pumped into spherical balloon at the rate of 3π ft³/min. At what rate is the surface area increasing when the radius is 3 ft?
- 4. A rocket is rising vertically from a point on the ground that is 100 m from an observer at ground level. The observer notes that the angle of elevation is increasing at a rate of $\pi/15$ radians/sec when the angle of elevation is $\pi/3$ radians. Find the speed of the rocket at that instant.

A kite is 100 ft high. There is 260 ft of string which is being reeled out at the rate of 5 ft/sec. If this results in the kite being carried along horizontally, what is the horizontal speed of the kite?

h = 100ft	<i>x</i> = 100ft
<i>s</i> = 260ft	x = 260ft
$h = 260 \mathrm{ft}$	<i>s</i> = 100ft
ds/dt = 5 ft/sec	dh/dt = 5 ft/sec
dx/dt = 5 ft/sec	dh/dt = ?
dx/dt = ?	$\mathrm{d}s/\mathrm{d}t = ?$
$x^2 + h^2 = s^2$	$A = \frac{1}{2} xh$

Helium is pumped into spherical balloon at the rate of 3π ft³/min. At what rate is the radius increasing when the radius is 3 ft?

<i>r</i> = 3 ft	V = 3 ft
SA = 3 ft	d = 3 ft
$V = 3\pi$ ft ³ /min	$r = 3\pi$ ft ³ /min
$dV/dt = 3\pi \text{ ft}^3/\text{min}$	$dSA/dt = 3\pi \text{ ft}^3/\text{min}$
$dr/dt = 3\pi \text{ ft}^3/\text{min}$	$\mathrm{d}\mathbf{V}/\mathrm{d}t = ?$
$\mathrm{d}r/\mathrm{d}t = ?$	$\mathrm{d}SA/\mathrm{d}t = ?$
$V=4/3 \pi r^3$	$SA = 4\pi r^2$

Helium is pumped into spherical balloon at the rate of 3π ft³/min. At what rate is the surface area increasing when the radius is 3 ft?

<i>r</i> = 3 ft	V = 3 ft
SA = 3 ft	d = 3 ft
$V = 3\pi$ ft ³ /min	$r = 3\pi$ ft ³ /min
$\mathrm{d}V/\mathrm{d}t = 3\pi \mathrm{ft^3/min}$	$dSA/dt = 3\pi \text{ ft}^3/\text{min}$
$\mathrm{d}r/\mathrm{d}t = 3\pi \mathrm{~ft^3/min}$	$\mathrm{d} \mathbf{V}/\mathrm{d} t = ?$
$\mathrm{d}r/\mathrm{d}t = ?$	$\mathrm{d}SA/\mathrm{d}t = ?$
$V = 4/3 \pi r^3$	$SA = 4\pi r^2$

A rocket is rising vertically from a point on the ground that is 100 m from an observer at ground level. The observer notes that the angle of elevation is increasing at a rate of $\pi/15$ radians/sec when the angle of elevation is $\pi/3$ radians. Find the speed of the rocket at that instant.

y = 100 m	<i>x</i> = 100 m
$y = \pi/15$ radians/sec	$\theta = \pi/15$ radians/sec
$\theta = \pi/3$ radians	$x = \pi/3$ radians
$d\theta/dt = \pi/15$ radians/sec	$dx/dt = \pi/15$ radians/sec
$dy/dt = \pi/15$ radians/sec	dy/dt = ?
$\mathrm{d}x/\mathrm{d}t = ?$	$\mathrm{d}\theta/\mathrm{d}t = ?$
$tan \ \theta = y/x$	$tan \ \theta = x/y$