Unit 5 (Chapter 4):	Trigonometric	F	unctions
CIII C (Chapter 1	•	11150HOHICUIC	•	uncuons

DATE:	
Pre-Calculus	2016-2017

4.8 Solving Problems with Trig

Target 5F: Evaluate inverse and composite trigonometric functions and expressions using the unit circle *Review of Prior Concepts*

If $\sin a = \frac{7}{8}$, what is the value of $\cos a$?

More Practice

Trigonometry

https://www.khanacademy.org/math/trigonometry/trigonometry-right-triangles

http://www.mathsisfun.com/algebra/trigonometry.html

http://www.regentsprep.org/regents/math/algebra/at2/ltrig.htm

http://www.mathgoodies.com/lessons/vol2/circumference.html

https://www.youtube.com/watch?v=SqFQZWRALGc

https://www.youtube.com/watch?v=Jsiy4TxgIME

SAT Connection

Passport to Advanced Math

14. Use structure to isolate or identify a quantity of interest in an expression

Example: In triangle ABC, the measure of $\angle B$ is 90°,

BC = 16, and AC = 20. Triangle DEF is similar to

triangle ABC, where vertices D, E, and F

correspond to vertices A, B, and C, respectively, and

each side of triangle *DEF* is $\frac{1}{3}$ the length of the

corresponding side of triangle ABC. What is the

value of $\sin F$?

NOTE: You may start your answers in any column, space permitting. Columns you don't need to use should be

left blank.

5 0 0 0 0 6 0 0 0 0 7 0 0 0 0 8 0 0 0

90000

3 0 0 0 0

4 0 0 0 0

Solution

Terminology

Angle of elevation (measure with respect to a horizontal line):

Angle of depression (measure with respect to a horizontal line):

Navigational angle (measure with respect to north, positive direction is clockwise):

Surveying, bearing angle (the acute angle at which the direction varies to the east or west from the north-south line):

Examples

1) From a point 384 ft in a horizontal line from the base of a building, the angle of elevation to the top of the building is 36°. How tall is the building?

2) A certain piece of land is in the shape of a right triangle. The longest side is 842 meters and bears S 36° W. If one of the sides runs north-south, how long is the side that runs east-west?

3) A piece of land slopes at an angle of 3° and runs for 280 ft in the direction of the slope. In order to level the land, a retaining wall is to be built at the lower end of the property so that fill-dirt can level the property. How high must the wall be?

4) p.433 #14

While hiking on a level path toward Colorado's Front Range, Otis Evans determines that the angle of elevation to the top of Long's Peak is 30°. Moving 1000 ft closer to the mountain, Otis determines the angle of elevation to be 35°. How much higher is the top of Long's Peak than Otis' elevation?

5) p. 434 #18

The *Cerrito Lindo* travels at a speed of 40 knots from Fort Lauderdale on a course of 65° for 2 hours and then changes to a course of 155° for 4 hours. Determine the distance and the bearing from Fort Lauderdale to the boat.

More Practice

Trigonometric Ratios

 $\underline{http://www.regentsprep.org/regents/math/algtrig/att1/trigsix.htm}$

http://www.themathpage.com/atrig/solve-right-triangles.htm

http://www.mathguide.com/lessons/RightTriTrig.html

https://www.youtube.com/watch?v=l5VbdqRjTXc

p.432 #3,7,9,13,15,16,17,23,25

SAT Connection

Solution

The correct answer is $\frac{3}{5}$ or .6. Triangle ABC is a right triangle with its right angle at B. Thus, \overline{AC} is the hypotenuse of right triangle ABC, and \overline{AB} and \overline{BC} are the legs of right triangle ABC. By the Pythagorean theorem, $AB = \sqrt{20^2 - 16^2} = \sqrt{400 - 256} = \sqrt{144} = 12$. Since triangle DEF is similar to triangle ABC, with vertex F corresponding to vertex C, the measure of angle F equals the measure of angle F. Thus, $\sin F = \sin C$. From the side lengths of triangle F or its decimal equivalent, .6, may be gridded as the correct answer.

DATE: _____ Pre-Calculus 2016-2017

DATE:	
Pre-Calculus	2016-2017

Unit 5 (Chapter 4): Trigonometric Functions

Choice C is correct. Since the angles are acute and $sin(a^{\circ}) = cos(b^{\circ})$, it follows from the complementary angle property of sines and cosines that a + b = 90. Substituting 4k - 22 for a and 6k - 13 for b gives (4k - 22) + (6k - 13) = 90, which simplifies to 10k - 35 = 90. Therefore, 10k = 125, and k = 12.5.

Choice A is incorrect and may be the result of mistakenly assuming that a + b and making a sign error. Choices B and D are incorrect because they result in values for a and b such that $\sin(a^\circ) \neq \cos(b^\circ)$.