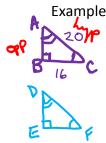
4.8 Solving Problems with Trig

Target 5F: Evaluate inverse and composite trigonometric functions and expressions using the unit circle **Review of Prior Concepts**


	8 More Practice	VIS X=JIS.
If $\sin a = \frac{7}{8}$, what is the value of $\cos a$?	Cas a= adj hugp = 15	8 2 ^{2+7²=8² 7 x²+49=64 x²=15}

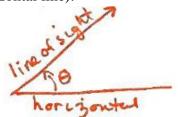
https://www.khanacademy.org/math/trigonometry/trigonometry-right-triangles http://www.mathsisfun.com/algebra/trigonometry.html http://www.regentsprep.org/regents/math/algebra/at2/ltrig.htm http://www.mathgoodies.com/lessons/vol2/circumference.html https://www.youtube.com/watch?v=SqFQZWRALGc https://www.youtube.com/watch?v=Jsiy4TxgIME

SAT Connection Passport to Advanced Math

14. Use structure to isolate or identify a quantity of interest in an expression

e:	In triangle <i>ABC</i> , the measure of $\angle B$ is 90°,	15) + 16= 20
	In triangle <i>ABC</i> , the measure of $\angle B$ is 90°, <i>BC</i> = 16, and <i>AC</i> = 20. Triangle <i>DEF</i> is similar to (P	B+ 256 = 400 (AB)= 144
	triangle ABC , where vertices D , E , and F	AB = 12
	correspond to vertices A, B, and C, respectively, and	sin F = sinC
	each side of triangle <i>DEF</i> is $\frac{1}{3}$ the length of the	$\sin F = \frac{12}{20}$
	corresponding side of triangle <i>ABC</i> . What is the	$=\frac{3}{5}$
	value of sin F?	

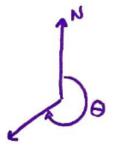
	3		15	
1			0	
	Ο	Ο	Ο	0
0	Ο	0	Ο	0
1	Ο	Ο	Ο	0
2	<u> </u>	\sim	Ο	<u> </u>
3	P	Ο	Ο	0
4	Ò	Ο	Ο	0
5	Ο	Ο	0	0
6	Ο	Ο	Ο	0
7	Ο	Ο	Ο	0
8	Ο	Ο	Ο	0
9	Ο	Ο	Ο	0

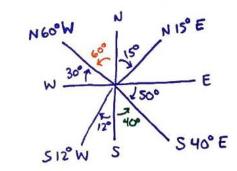

1 -

NOTE: You may start your answers in any column, space permitting. Columns you don't need to use should be left blank.

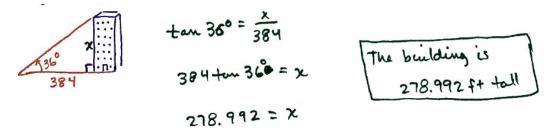
Solution

Terminology

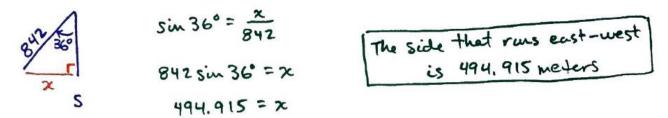

Angle of elevation (measure with respect to a horizontal line):


Angle of depression (measure with respect to a horizontal line):

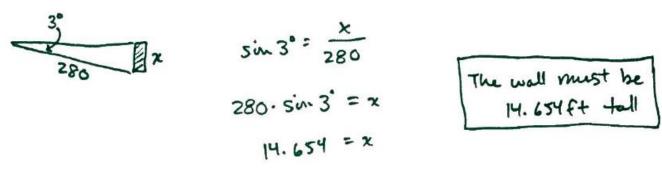
Navigational angle (measure with respect to north, positive direction is clockwise):



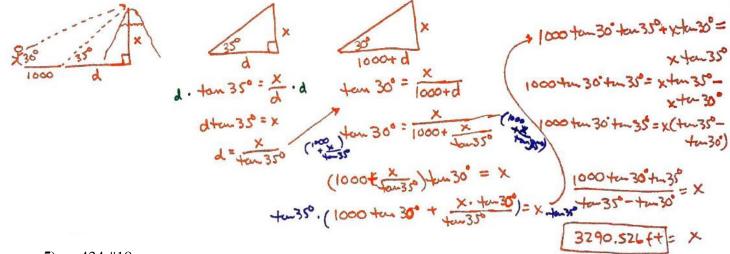
Surveying, bearing angle (the acute angle at which the direction varies to the east or west from the north-south line):



Examples

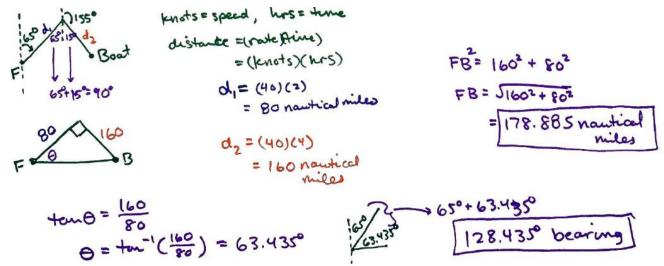

1) From a point 384 ft in a horizontal line from the base of a building, the angle of elevation to the top of the building is 36°. How tall is the building?

A certain piece of land is in the shape of a right triangle. The longest side is 842 meters and bears S 36° W. If one of the sides runs north-south, how long is the side that runs east-west?


3) A piece of land slopes at an angle of 3° and runs for 280 ft in the direction of the slope. In order to level the land, a retaining wall is to be built at the lower end of the property so that fill-dirt can level the property. How high must the wall be?

4) p.433 #14

p. 433


While hiking on a level path toward Colorado's Front Range, Otis Evans determines that the angle of elevation to the top of Long's Peak is 30°. Moving 1000 ft closer to the mountain, Otis determines the angle of elevation to be 35°. How much higher is the top of Long's Peak than Otis' elevation?

5) p. 434 #18

p. 434

The *Cerrito Lindo* travels at a speed of 40 knots from Fort Lauderdale on a course of 65° for 2 hours and then changes to a course of 155° for 4 hours. Determine the distance and the bearing from Fort Lauderdale to the boat.

More Practice

Trigonometric Ratios http://www.regentsprep.org/regents/math/algtrig/att1/trigsix.htm http://www.themathpage.com/atrig/solve-right-triangles.htm http://www.mathguide.com/lessons/RightTriTrig.html https://www.youtube.com/watch?v=l5VbdqRjTXc

> Homework Assignment p.432 #3,7,9,13,15,16,17,23,25

SAT Connection Solution

The correct answer is $\frac{3}{5}$ or .6. Triangle *ABC* is a right triangle with its right angle at *B*. Thus, \overline{AC} is the hypotenuse of right triangle *ABC*, and \overline{AB} and \overline{BC} are the legs of right triangle *ABC*. By the Pythagorean theorem, $AB = \sqrt{20^2 - 16^2} = \sqrt{400 - 256} = \sqrt{144} = 12$. Since triangle *DEF* is similar to triangle *ABC*, with vertex *F* corresponding to vertex *C*, the measure of angle *F* equals the measure of angle *C*. Thus, $\sin F = \sin C$. From the side lengths of triangle *ABC*, $\sin C = \frac{\text{opposite side}}{\text{hypotenuse}} = \frac{AB}{AC} = \frac{12}{20} = \frac{3}{5}$. Therefore, $\sin F = \frac{3}{5}$. Either $\frac{3}{5}$ or its decimal equivalent, .6, may be gridded as the correct answer.

DATE: _____ Pre-Calculus 2016-2017

DATE: _____ Pre-Calculus 2016-2017

Choice C is correct. Since the angles are acute and $sin(a^\circ) = cos(b^\circ)$, it follows from the complementary angle property of sines and cosines that a + b = 90. Substituting 4k - 22 for a and 6k - 13 for b gives (4k - 22) + (6k - 13) = 90, which simplifies to 10k - 35 = 90. Therefore, 10k = 125, and k = 12.5.

Choice A is incorrect and may be the result of mistakenly assuming that a + b and making a sign error. Choices B and D are incorrect because they result in values for *a* and *b* such that $sin(a^{\circ}) \neq cos(b^{\circ})$.