Riemann Sums Practice

X	1	3	5	7	9
h(x)	2	3	3	4	5

- **1.** Using the table of values shown above for the continuous function h(x), which of the following is the approximation of the area under the curve h(x) using midpoint sum with 2 equal subintervals?
 - **(A)** 34
- **(B)** 30
- **(C)** 28
- **(D)** 27
- **(E)** 24

2. The rate R at which a solar panel delivers electricity is a differentiable function of time t. The table below shows a sample of these rates, which can be modeled as a strictly increasing function on $4 \le t \le 16$, over an 18-hour period. Use a right Riemann sum with 6 equal subdivisions to approximate the number of amps delivered by the panel from t = 4 to t = 16. Is this approximation an overestimate or underestimate of the actual number of amps?

t (hours)	4	6	8	10	12	14	16	18	20	22
R(t) (amps/hour)	36	78	160	240	320	350	360	320	240	160

- **3.** Suppose the graph of f is decreasing on $a \le x \le b$. Then, using the same number of subdivisions, and with L, R, and M denoting, respectively, left, right and midpoint Riemann sums, it follows that:
 - (A) $R \le M \le L$
- **(B)** $R \le L \le M$
- (C) $L \le M \le R$
- **(D)** $L \le R \le M$
- **(E)** none of these