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Approximate the area of R(?) from 7= 0 to £ = 90 using left sum with the five subintervals
indicated by the data in the table. Is this numerical approximation less than the actual
area of R(?) from ¢ =0 to = 90? Explain your reasoning.

left sum = 20(20) +10(306)+ 1o (40)+ 20 (55) + 20((S)
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Riemann Sums as Over/Underestimates of Area

1. The rate of temperature of water in a tub at time ¢ is modeled by a strictly éﬁm, )
twice-differentiable function W’(r), where W (1) is measured in degrees Fahrenheit per minute and 7 is

measure in minutes. For 0 <7 <20, use a left Riemann sum with thubintcrvals indicated by
the data in the table to approximate the temperature o the water over these 20 minutes. Does this

approximation overestimate or undereslil}gne the actual temperature of the water?
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I'he rate R at which a solar panel delivers electricity is a differentiable function of time ¢. The table
below shows a sample of these rates, which can be modeled as a ing function

on4 <r<16, over an 18-hour period. Use a right Riemann sum witl ual subdivisions to
approximate the number of amps delivered by the panel from £=4 to 1= 16. Is this approximation an
overestimate or underestimate of the actual number of amps?
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asing on ¢ <x < bh. Then, using the same number of subdivisions, and
with L, R, and M denoting, respectively, left, right and midpoint Riemann sums, it follows that:

(A)RSMSL\ B)R<L<M (C)L<M<R
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