\qquad

Definite Integrals

Riemann Sums - area under curve found by summing up the area of rectangles

Area $\approx \sum$ area of rectangles

What if the \# of rectangles was infinite?

$$
\begin{aligned}
\text { Area }= & \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k} \\
& \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k}
\end{aligned}
$$

Definition of the Definite Integral

If f is defined on $[a, b]$ and $\lim _{\Delta x \rightarrow 0} \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k} \quad$ exists,
then f is integrable on $[a, b]$ and

$$
\lim _{\Delta x \rightarrow 0} \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k}=
$$

Set up a definite integral that yields the area of the shaded region.

Example 1:

$$
f(x)=x^{2}+2
$$

Example 2:

$$
g(x)=\cos x
$$

Evaluate the integral (using knowledge of geometric shapes)
Example 1: $\int_{3}^{7} 4 d x$
Example 2: $\quad \int_{1}^{3}(-2 x+4) d x$

