

 Let g be the function, given by the graph above, defined on the closed interval -3 ≤ x ≤ 4 which consists of one line segment and a semicircle. Let w(x) = ∫₋₃^x g(t) dt. Find w(-3) and w(0).

2. The function f is defined on the closed interval [-3,8] and is given by the graph above which consists of three line segments and a semicircle.

Let *h* be the function defined by $h(x) = x - \int_{x-3}^{3} f(t) dt$. Find h(0).

3. The function *h* is defined on the closed interval [-4,7] and is given by the graph above which consists of three line segments and two semicircles.

Let f be the function defined by $f(x) = \int_x^2 h(t) dt$. Find f(-4).

Graph of g(x)

4. Let g be the function, given by the graph above, defined on the closed interval $-3 \le x \le 4$ which consists of one line segment and a semicircle. Let $w(x) = \int_0^x g(t) dt$. Find w(4).

5. The function f is defined on the closed interval [-3,8] and is given by the graph above which consists of three line segments and a semicircle.

Let *h* be the function defined by $h(x) = x - \int_{3}^{x-4} f(t) dt$. Find h(12).

6. The function h is defined on the closed interval [-4,7] and is given by the graph above which consists of three line segments and two semicircles.

Let *f* be the function defined by $f(x) = \int_x^7 h(t) dt$. Find f(0).

7. The function f is defined on the closed interval [0,9] and is given by the graph above which consists of three line segments and a semicircle centered at point (5,1). Let g be the function defined by g(x) = ∫₂^x f(t) dt. Find g(9).

8. The function f is defined on the closed interval [0,9] and is given by the graph above which consists of three line segments and a semicircle centered at point (5,1). Let g be the function defined by $g(x) = \int_{1}^{x} f(t) dt$. Find g(4).