

Graph of $g(x)$

1. Let g be the function, given by the graph above, defined on the closed interval $-3 \leq x \leq 4$ which consists of one line segment and a semicircle.
Let $w(x)=\int_{-3}^{x} g(t) d t$. Find $w(-3)$ and $w(0)$.

2. The function f is defined on the closed interval $[-3,8]$ and is given by the graph above which consists of three line segments and a semicircle.
Let h be the function defined by $h(x)=x-\int_{x-3}^{3} f(t) d t$. Find $h(0)$.

3. The function h is defined on the closed interval $[-4,7]$ and is given by the graph above which consists of three line segments and two semicircles.
Let f be the function defined by $f(x)=\int_{x}^{2} h(t) d t$. Find $f(-4)$.

Graph of $g(x)$
4. Let g be the function, given by the graph above, defined on the closed interval $-3 \leq x \leq 4$ which consists of one line segment and a semicircle. Let $w(x)=\int_{0}^{x} g(t) d t$. Find $w(4)$.

5. The function f is defined on the closed interval $[-3,8]$ and is given by the graph above which consists of three line segments and a semicircle.
Let h be the function defined by $h(x)=x-\int_{3}^{x-4} f(t) d t$. Find $h(12)$.

6. The function h is defined on the closed interval $[-4,7]$ and is given by the graph above which consists of three line segments and two semicircles.
Let f be the function defined by $f(x)=\int_{x}^{7} h(t) d t$. Find $f(0)$.

7. The function f is defined on the closed interval $[0,9]$ and is given by the graph above which consists of three line segments and a semicircle centered at point $(5,1)$.
Let g be the function defined by $g(x)=\int_{2}^{x} f(t) d t$. Find $g(9)$.

8. The function f is defined on the closed interval $[0,9]$ and is given by the graph above which consists of three line segments and a semicircle centered at point $(5,1)$.
Let g be the function defined by $g(x)=\int_{1}^{x} f(t) d t$. Find $g(4)$.

