Rules for Definite Integrals: Extra Practice

1. Let $\int_{1}^{2} f(x) dx = -3$, $\int_{1}^{5} f(x) dx = 5$, and $\int_{1}^{5} g(x) dx = 9$. Find:

a)
$$\int_{2}^{2} g(x) dx$$

b)
$$\int_{1}^{2} (3f(x)+1)dx$$

$$\mathbf{c}) \int_{2}^{5} f(x) dx$$

2. If f(x) is continuous on [1,3] and $2 \le f(x) \le 4$, what is the greatest possible value of $\int_1^3 f(x) dx$?

3. The graph of f is the semicircle shown below. Let g be the function given by $\int_0^x f(t)dt$. What is the value of g(-2)?

4. Suppose that h is continuous and that $\int_{-1}^{1} h(r)dr = 0$ and $\int_{-1}^{3} h(r)dr = 7$. Find:

a)
$$\int_{1}^{3} h(r)dr$$

b)
$$-\int_3^1 h(r)dr$$

MULTIPLE CHOICE

5. If f(x) is continuous on the interval $a \le x \le b$ and a < c < b, then $\int_{c}^{b} f(x) dx$ is equal to

(A)
$$\int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

(B)
$$\int_{a}^{c} f(x)dx - \int_{a}^{b} f(x)dx$$

(C)
$$\int_{c}^{a} f(x)dx + \int_{b}^{a} f(x)dx$$
 (D) $\int_{a}^{b} f(x)dx - \int_{a}^{c} f(x)dx$

(D)
$$\int_{a}^{b} f(x) dx - \int_{a}^{c} f(x) dx$$

(E)
$$\int_{a}^{c} f(x) dx - \int_{b}^{c} f(x) dx$$