2nd Fundamental Theorem of Calculus

Make a Connection....

1. Given $g(x) = \int_3^x (t^2 - 2) dt$, find g'(x).

2. In problem #1, can you see a connection between g(x) and g'(x)? If yes, find g'(x) in one step for each problem below.

a)
$$g(x) = \int_4^x (3t^2 - 2) dt$$

a)
$$g(x) = \int_4^x (3t^2 - 2) dt$$
 b) $g(x) = \int_5^x (3t^2 - 2t) dt$

3. For $g(x) = \int_3^{x^2} (t^2 - 2) dt$, $g'(x) = 2x^5 - 4x$. Does your method apply to this problem? If not, how can you fix your method?

2nd FTC

If f is continuous on [a, b] and

$$F(x) = \int_{a}^{x} f(t) dt$$

$$\forall x \text{ in } [a, b]$$

then

and if

$$F(x) = \int_{a}^{g(x)} f(t) dt \qquad \forall x \text{ in } [a, b]$$

$$\forall x \text{ in } [a, b]$$

then

Example 1:

Find F'(x) where $F(x) = \int_{x}^{\pi} \sqrt{1 + \sec t} \, dt$.

Example 2:

If $h(x) = \int_1^{\tan x} \sqrt{t + \sqrt{t}} dt$, find h'(x).

Example 3:

Given $y = \int_{e^x}^0 \sin^3 t \, dt$, find $\frac{dy}{dx}$.

Example 4: Find $\frac{d}{dx} \int_4^{3x} \cos t \, dt$.

Example 5:

If $g(x) = \int_{2x}^{3x} \frac{t^2 - 1}{t^2 + 1} dt$, find g'(x).