

The graph of a differentiable function f on the closed interval [1,7] is shown above. Let $h(x) = \int_1^x f(t) dt$ for $1 \le x \le 7$.

- (a) Find h(1).
- (b) Find h'(4).
- (c) On what interval or intervals is the graph of h concave upward? Justify your answer.
- (d) Find the value of x at which h has its minimum on the closed interval [1,7]. Justify your answer.

a)
$$h(i) = \int_{1}^{1} f(t) dt$$
 $h(i) = 0$

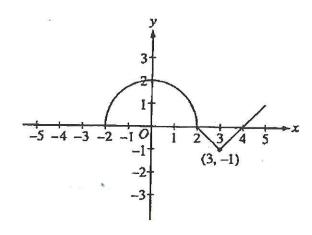
b) $h'(x) = \frac{d}{dx} \int_{1}^{x} f(t) dt$
 $h'(x) = f(x)$
 $h'(4) = f(4)$
 $h'(4) = 2$

c)
$$h'(x) = f(x)$$

 $h''(x) = f'(x) > 0 \Rightarrow h conc. up$
 $h concave up on (1,3) U(6,7)$
 $b/c h''(x) = f'(x) > 0 on (1,3) U(6,7)$
d) $h'(x) = f(x) = 0$
 $e(x) = 5, x = 7 \Rightarrow crit #s$
 $e(x) = 5, x = 7 \Rightarrow crit #s$
 $e(x) = 5, x = 7 \Rightarrow crit #s$
 $e(x) = 5, x = 7 \Rightarrow crit #s$
 $e(x) = 5, x = 7 \Rightarrow crit #s$
 $e(x) = 5, x = 7 \Rightarrow crit #s$
 $e(x) = 5, x = 7 \Rightarrow crit #s$
 $e(x) = 5, x = 7 \Rightarrow crit #s$
 $e(x) = 5, x = 7 \Rightarrow crit #s$
 $e(x) = 6, x = 1$
 $e(x) = 1, x = 1$

Copyright © 2003 by College Entrance Examination Board. All rights reserved. Available at apcentral.collegeboard.com

50, h(7)>0



The graph of the function f consists of a semicircle and two line segments as shown above. Let g be the function given by $g(x) = \int_0^x f(t)dt$.

- (a) Find g(3).
- (b) Find all the values of x on the open interval (-2,5) at which g has a relative maximum. Justify your answer.
- (c) Write an equation for the line tangent to the graph of g at x=3.
- (d) Find the x-coordinate of each point of inflection of the graph of g on the open interval (-2,5). Justify your answer.

a)
$$g(3) = \int_{1}^{3} f(t) dt$$

 $= \frac{1}{4} \pi(2)^{2} + \frac{1}{2} (1)(-1)$
 $g(3) = \pi - \frac{1}{2}$
b) $g'(x) = \frac{d}{dx} \int_{1}^{x} f(t) dt$
 $g'(x) = f(x) = 0$
 $G(x) = -2, 2, 4 \text{ (crit #s)}$
 $g'=\frac{1}{2} + \frac{1}{2} + \frac{1}$

c) by
$$y-y_1 = m(x-x_1)$$

 $y-g(3) = g'(3)(x-3)$
 $g(3) = \int_{3}^{3}f(4)dt$
 $g'(x) = f(x)$
 $g'(x) = f(x)$
 $g'(3) = f(3)$
 $g''(3) = f'(3)$
 $g''($