Trapezoid Rule

Recall Riemann Sums....

x	0	0.5	1.0	1.5	2.0
$f(x)$	3	4	5	8	13

A table of values for a continuous function f is shown above. If four equal subintervals of [0,2] are used, what is the right sum approximation of $\int_{0}^{2} f(x) d x$?

Trapezoid Sum (Trapezoid Rule)

Area of a Trapezoid: $\frac{1}{2}\left(b_{1}+b_{2}\right) h$

Example 1:

Use a trapezoidal sum with 3 equal subintervals to estimate the area of the region bounded by $y=x^{2}+2$ and x-axis between $x=1$ and $x=4$.

Example 2:

x	0	0.5	1.0	1.5	2.0
$f(x)$	3	4	5	8	13

A table of values for a continuous function f is shown above. If four equal subintervals of $[0,2]$ are used, what is the trapezoidal approximation of $\int_{0}^{2} f(x) d x$?

Trapezoid Sum (Unequal Subintervals)

t (minutes)	$R(t)$ (gallons per minute)
0	20
30	30
40	40
50	55
70	65
90	70

Approximate the value of $\int_{0}^{90} f(x) d x$ using a trapezoidal sum with the five subintervals indicated by the data in the table.

Example 2:

x	0	1	4	6	10
$f(x)$	3	5	2	-1	1

A table of values for a continuous function f is shown above. If four subintervals of $[0,10]$ are used, what is the trapezoidal approximation of $\int_{0}^{10} f(x) d x$?

