Trapezoid Rule

Recall Riemann Sums....

x	0	0.5	1.0	1.5	2.0
<i>f</i> (<i>x</i>)	3	4	5	8	13

A table of values for a continuous function f is shown above. If four equal subintervals of [0, 2] are used, what is the right sum approximation of $\int_0^2 f(x) dx$?

Example 1:

Use a trapezoidal sum with 3 equal subintervals to estimate the area of the region bounded by $y = x^2 + 2$ and x-axis between x = 1 and x = 4.

Example 2:

x	0	0.5	1.0	1.5	2.0
<i>f</i> (<i>x</i>)	3	4	5	8	13

A table of values for a continuous function f is shown above. If four equal subintervals of [0, 2] are used, what is the trapezoidal approximation of $\int_0^2 f(x) dx$?

Approximate the value of $\int_0^{90} f(x) dx$ using a trapezoidal sum with the five subintervals indicated by the data in the table.

Example 2:

x	0	1	4	6	10
<i>f</i> (<i>x</i>)	3	5	2	-1	1

A table of values for a continuous function f is shown above. If four subintervals of [0, 10] are used, what is the trapezoidal approximation of $\int_0^{10} f(x) dx$?