Trapezoid Rule

Recall Riemann Sums....

	Ø	- 12 0	12 64	م يا:	*- 2
x	0	0.5	1.0	1.5	2.0
f (x)	3	4	5	8	13
		R	(C	F	-

A table of values for a continuous function f is shown above. If four equal subintervals of [0, 2] are used, what is the right sum approximation of $\int_0^2 f(x) dx$?

$$\int_{0}^{2} f(x) dx \approx \frac{1}{2} (13) + \frac{1}{2} (8) + \frac{1}{2} (5) + \frac{1}{2} (4)$$

$$\approx \frac{1}{2} (13 + 8 + 5 + 4)$$

$$\approx \frac{1}{2} (30)$$

$$\approx |3|$$

Trapezoid Sum (Trapezoid Rule)

f(u3) f(u3) f(u3)

धाने .

Area of a Trapezoid: $\frac{1}{2}(b_1 + b_2)\underline{h}$

5° Farde -> trapezord approximation f(xa-1)
a of the integral. f(xa)

$$= \frac{1}{2} \Delta x \left(f(x_0) + f(x_1) + f(x_1) + f(x_2) + f(x_3) + \dots + f(x_{N-1}) + f(x_N) \right)$$

$$= \frac{1}{2} \left(\frac{b - a}{n} \right) \left(f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{N-1}) + f(x_N) \right)$$

n with 2 panel subintervals to actimate

Use a trapezoidal sum with 3 equal subintervals to estimate the area of the region bounded by $y = x^2 + 2$ and x-axis between x = 1 and x = 4.

$$\Delta x = \frac{4-1}{3} = 1$$

$$\int_{1}^{4} (x^{2} + 2) dx \approx \frac{1}{2} (\frac{4-1}{3}) (3 + 2(6) + 2(11) + 18)$$

$$\approx \frac{1}{2} (1) (3 + 12 + 22 + 18)$$

$$\approx \frac{1}{2} (55)$$

$$\approx \frac{55}{2}$$

Example 2:

х	0	0.5	1.0	1.5	2.0
f(x)	თ <mark>)</mark>	4)	5)	®)	13

A table of values for a continuous function f is shown above. If four equal subintervals of [0,2] are used, what is the trapezoidal approximation of $\int_0^2 f(x) dx$?

$$\int_{0}^{2} F(x) dx \approx \frac{1}{7} \left(\frac{2-0}{4} \right) \left(3 + 2(4) + 2(5) + 2(8) + 13 \right)$$

$$\approx \frac{1}{7} \left(\frac{1}{7} \right) \left(3 + 8 + 10 + 16 + 13 \right)$$

$$\approx \frac{1}{7} \left(\frac{1}{7} \right)$$

$$\approx \frac{25}{7}$$

What if the subintervals are not equal?

Trapezoid Sum (Unequal Subintervals)

Sfalde = traperpid approximation

Sfalde = \frac{1}{5} (f(x_0) + f(x_1)) \DX_1 + \frac{1}{5} (f(x_1) + f(x_2)) \DX_2

need to calculde area of each
traperpid separately.

Example 1:

Approximate the value of $\int_0^{90} f(x) dx$ using a trapezoidal sum with the <u>five</u> subintervals indicated by the data in the table.

$$\int_{0}^{90} f(x) dx = \frac{1}{2} (20+30) 30 + \frac{1}{2} (30+40) 10^{4} = \frac{1}{2} (40+55)(10) + \frac{1}{2} (55+65)(20) + \frac{1}{2} (65+70)(20)$$

$$\approx \frac{1}{2} (50(30) + 70(10) + 95(10) + 120(20) + 135(20))$$

 $\approx \frac{1}{2} (8250)$
 ≈ 4125 gollans

Example 2:

ax=1 ax=3 ax=2 ax=4							
x	0	1	4	6	10		
f(x)	3)	5	2	-1	1		

A table of values for a continuous function f is shown above. If four subintervals of [0, 10] are used, what is the trapezoidal approximation of $\int_0^{10} f(x) dx$?

$$\int_{0}^{10} f(\omega) d\omega \approx \frac{1}{2} (3+5)(1) + \frac{1}{2} (5+2)(3) + \frac{1}{2} (2+-1)(2) + \frac{1}{2} (-1+1)(4)$$

$$\frac{1}{2} \left(8(1) + 7(3) + 1(2) + 0(4) \right)$$

$$\frac{1}{2} \left(8 + 21 + 2 \right)$$

$$\frac{1}{2} \left(8 + 21 + 2 \right)$$

$$\frac{1}{2} \left(31 \right)$$

$$\frac{31}{2} \left[\frac{31}{2} \right]$$