\qquad

Recall Riemann Sums....

A table of values for a continuous function f is shown above. I fourequal subintervals of [0, 2] are used, what is the right sum approximation of $\int_{0}^{2} f(x) d x$?

$$
\begin{aligned}
\Delta x=\frac{b-a}{n} \rightarrow \Delta x & =\frac{2-0}{4} \\
& =\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
\int_{0}^{2} f(x) d x & \approx \frac{1}{2}(13)+\frac{1}{2}\left(81+\frac{1}{2}(5)+\frac{1}{2}(4)\right. \\
& \approx \frac{1}{2}(13+8+5+4) \\
& \approx \frac{1}{2}(30) \\
& \approx 15
\end{aligned}
$$

Trapezoid Sum (Trapezoid Rule)

Area of a Trapezoid: $\frac{1}{2}\left(b_{1}+b_{2}\right) \underline{h}$ $\int_{a}^{b} f(x) d x \rightarrow$ trapezoid approyination of the integral.

Trapezoid Rule

$$
\begin{aligned}
= & \frac{1}{2}\left(f\left(x_{0}\right)+f\left(x_{1}\right)\right) \Delta x+\frac{1}{2}\left(f\left(x_{1}\right)+f\left(x_{2}\right)\right) \Delta x x_{0} \\
& +\frac{1}{2}\left(f\left(x_{2}\right)+f\left(x_{3}\right)\right) \Delta x+\ldots . \\
& +\frac{1}{2}\left(f\left(x_{n-1}\right)+f\left(x_{n}\right)\right) \Delta x \\
= & \frac{1}{2} \Delta x\left(f\left(x_{0}\right)+f\left(x_{1}\right)+f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+\ldots+f\left(x_{n-1}\right)+f\left(x_{n}\right)\right) \\
= & \frac{1}{2}\left(\frac{b-a}{n}\right)\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)
\end{aligned}
$$

Example 1:

Use a trapezoidal sum with 3 equal subintervals to estimate the area of the region bounded by $y=x^{2}+2$ and x-axis between $x=1$ and $x=4$.

x	1	2	3	4
$f(x)$	3	6	11	18

$$
\Delta x=\frac{4-1}{3}=1
$$

$$
\begin{aligned}
\int_{1}^{4}\left(x^{2}+2\right) d x & \approx \frac{1}{2}\left(\frac{4-1}{3}\right)(3+2(6)+2(1 .)+18) \\
& \approx \frac{1}{2}(1)(3+12+22+18) \\
& \approx \frac{1}{2}(55) \\
& \approx \frac{55}{2}
\end{aligned}
$$

Example 2:

x	0	0.5	1.0	1.5	2.0
$f(x)$	3	4	5	8	13

A table of values for a continuous function f is shown above. If four equal subintervals of [0, 2] are used, what is the trapezoidal approximation of $\int_{0}^{2} f(x) d x$?

$$
\begin{aligned}
\int_{0}^{2} f(x) d x & \approx \frac{1}{2}\left(\frac{2-0}{4}\right)(3+2(4)+2(5)+2(8)+13) \\
& \approx \frac{1}{2}\left(\frac{1}{2}\right)(3+8+10+16+13)
\end{aligned}
$$

$$
\therefore \frac{1}{4}(50)
$$

$$
\approx \frac{25}{2}
$$

What if the subintervals are not equal?

Trapezoid Sum (Unequal Subintervals)

Example 1:

Approximate the value of $\int_{0}^{90} f(x) d x$ using a trapezoidal sum with the five subintervals indicated by the data in the table.

$$
\begin{aligned}
& \int_{0}^{90} f(x) d=2 \frac{1}{2}(20+30) 30+\frac{1}{2}(30+40) 10+\frac{1}{2}(40+55)(10)+\frac{1}{2}(55+65)(20) \\
& +\frac{1}{2}(65+70)(20) \\
& \approx \frac{1}{2}(50(30)+70(10)+95(10)+120(20)+135(20)) \\
& \approx \frac{1}{2}(8250) \\
& \approx 4125 \text { gallons }
\end{aligned}
$$

Example 2:

$\Delta x=1$								$\Delta x=3$							
x									$	$		0	1	4	6
:---:	:---:	:---:	:---:	:---:											
10															
$f(x)$	3	5	2	-1											

A table of values for a continuous function f is shown above. If four subintervals of $[0,10]$ are used, what is the trapezoidal approximation of $\int_{0}^{10} f(x) d x$?

1. $\int_{0}^{10} f(0) d x \approx \frac{1}{2}(3+5)(1)+\frac{1}{2}(5+2)(3)+\frac{1}{2}(2+-1)(2)+\frac{1}{2}(-1+1)(4)$ $\approx \frac{1}{2}(8(1)+7(3)+1(2)+0(4))$

$$
\approx \frac{1}{2}(8+21+2)
$$

$\approx \frac{1}{3}$ (31)

