


AP M/C & FRQ Trapezoidal Approximation Questions

1. If a trapezoidal sum overapproximates $\int_0^4 f(x) dx$, and a right Riemann sum underapproximates $\int_0^4 f(x) dx$, which of the following could be the graph of y = f(x)?

2.

х	f(x)	f'(x)
0	49	0
1	2	-8
2	-1	-80

The table above gives selected values for a differentiable and decreasing function f and its derivative. Which of the following is true?

- I. A trapezoidal sum overapproximates $\int_0^2 f(x) dx$
- II. A left Riemann sum underapproximates $\int_0^2 f(x)dx$
- (A) I only
- **(B)** II only
- (C) I and II are both true
- (**D**) Neither I nor II are true

Distance x (cm)	0	1	5	6	8
Temperature $T(x)$ (°C)	100	93	70	62	55

A metal wire of length 8 centimeters (cm) is heated at one end. The table above gives selected values of the temperature T(x), in degrees Celsius (°C), of the wire x cm from the heated end. The function T is decreasing and twice differentiable.

Write an integral expression in terms of T(x) for the average temperature of the wire. Estimate the average temperature of the wire using a trapezoidal sum with the four subintervals indicated by the data in the table. Indicate units of measure.