DATE: \qquad

AP M/C \& FRQ Trapezoidal Approximation Questions

1. $\longrightarrow f(x)$ is concave up
which of the following could be the graph of $y=f(x)$?

(B)

(D)

(E)

2.

x	$f(x)$	$f^{\prime}(x)$
0	49	0
1	2	-8
2	-1	-80

choice A b/c when $f(x)$ is concave up hep sum overapprox and when $f(x)$ is dec right sun undexppordx the $\int_{0}^{4} f(x) d x$.

$$
\begin{array}{r}
f^{\prime} \text { dee } \rightarrow f^{\prime \prime}<0 \rightarrow \text { fconcwi } \\
\text { down }
\end{array}
$$

The table above gives selected values for a differentiable and decreasing function f and its derivative. Which of the following is true?
I. A trapezoidal sum overapproximates $\int_{0}^{2} f(x) d x \rightarrow$ False ble hapezord sum under approx $\int_{0}^{2} f(x) d x$ whir dec $f^{\prime}(x)$ 居
II. A left Riemann sum underapproximates $\int_{0}^{2} f(x) d x \rightarrow$ False b/c left sum overapprox
(A) I only
(B) II only
(C) I and II are both true
(D) Neither I nor II are true
3.

A metal wire of length 8 centimeters (cm) is heated at one end. The table above gives selected values of the temperature $T(x)$, in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$, of the wire $x \mathrm{~cm}$ from the heated end. The function T is decreasing and twice differentiable.
\rightarrow org value $-\frac{1}{b-a} \int_{0}^{b} f(x) d x$
Write an integral expression in terms of $T(x)$ for the average temperature of the wire. Estimate the average temperature of the wire using a trapezoidal sum with the four subintervals indicated by the data in the table. Indicate units of measure.
org temp $=\frac{1}{8-0} \int_{0}^{8} T(x) d x$

$$
\begin{aligned}
\approx \frac{1}{8}\left(\frac{1}{2}(100+93)(1)+\frac{1}{2}(93+70)(4)\right. & +\frac{1}{2}(70+62)(1) \\
& \left.+\frac{1}{2}(62+55)(2)\right)
\end{aligned}
$$

$$
\approx \frac{1}{8}\left(\frac{1}{2}(193+163(4)+132+117(2))\right.
$$

$$
\approx \frac{1}{8}\left(\frac{1}{2}(193+652+132+234)\right.
$$

$\approx \frac{1}{8}\left(\frac{1}{2}(1211)\right)$

$$
\approx \frac{1211}{16}{ }^{\circ} \mathrm{C} \text { or } 75.688^{\circ} \mathrm{C}
$$

