Find the general solution to the differential equation.
(1) Solve for the differential (dy).
(2) Anti-derive both sides of the equation.

Example 1:
Find the general solution to $\frac{d y}{d x}=2 x$.

$$
\begin{aligned}
& \int d y=\int 2 x d x \\
& y=x^{2}+C
\end{aligned}
$$

Example 2:
Find the general solution to $\frac{d y}{d x}=\cos x e^{\sin x}$.

$$
\begin{aligned}
& \int y=\int \cos x e^{\sin x} d x \quad u=\sin x \\
& y=\int e^{u} d u \\
& y=e^{u}+C \\
& y=e^{\sin x}+C
\end{aligned}
$$

Example 3:
Find the general solution to $\frac{d y}{d t}=\frac{1}{1-2 t}$.

$$
\begin{array}{ll}
\int d y=\int \frac{1}{1-2 t} d t & u=1-2 t \\
y=\int \frac{1}{u} \cdot-\frac{1}{2} d u & -\frac{1}{2} d u=-2 d t \\
y=-\frac{1}{2} \int \frac{1}{u} d u \\
y=-\frac{1}{2} \ln |u|+C \\
y=-\frac{1}{2} \ln |1-2 t|+C & \text { or } y=\ln |1 \cdot 2 t|^{-1 / 2}+C
\end{array}
$$

Find the particular solution to the differential equation (or Solve the initial value problem explicitly)
(1) Solve for the differential (dy).
(2) Anti-derive both sides of the equation.
(3) Sub in given values to solve for C .
(4) Write solution with particular value of C .

Example 1:
Find the particular solution to $\frac{d y}{d x}=2 x$ at $(1,3)$.

$$
\text { (mention } \rightarrow \begin{aligned}
\int d y & =\int 2 x d x \\
y & =x^{2}+C \\
3 & =1^{2}+C \\
3 & =1+C \\
z & =C
\end{aligned}
$$

Example 2:
Solve the differential equation $\frac{d y}{d x}=\cos x-3 x^{2}$ with the initial value of $y=3$ when $x=0$.

$$
\begin{aligned}
& y=\sin x-x^{3}+c \rightarrow \sqrt{y-\sin x-x^{3}+3} \\
& 3=\sin 0-0^{3}+C \\
& \text { particulewr } \\
& 3=c \\
& \text { solution } \\
& 3=C
\end{aligned}
$$

Example 3:
Find the solution to $\frac{d A}{d t}=\cos t \sin t$ for $A=\frac{3}{2}$ for $t=\frac{\pi}{2}$.
! $\int d A=\int \cos t \sin t d t$

$$
\begin{aligned}
& u=\sin ^{-1} \\
& d u=\cos t d t
\end{aligned}
$$

! $\quad A=\int u d u$
1 al $A=\frac{1}{2} u^{2}+C$

