DATE:	
	-

Euler's Method AP Practice

1. Consider the differential equation $\frac{dy}{dx} = y^2(2x+2)$. Let y = f(x) be the particular solution to the differential equation with initial condition f(0) = -1. Use Euler's method, starting at x = 0 with two steps of equal size, to approximate $f(\frac{1}{2})$.

2. The function f is twice differentiable for x > 0 with f(1) = 15 and f''(1) = 20. Values of f', the derivative of f, are given for selected values of x in the table below.

x	1	1.1	1.2	1.3	1.4
f'(x)	8	10	12	13	14.5

Use Euler's method, starting at x = 1 with two steps of equal size, to approximate f(1.4). Show the computations that lead to your answer. 3. Consider the differential equation $\frac{dy}{dx} = 1 - y$. Let y = f(x) be the particular solution to the differential equation with initial condition f(1) = 0. For this particular solution, f(x) < 1 for all values of x.

Use Euler's method, starting at x = 0 with two steps of equal size, to approximate f(0). Show the work that leads to your answer.

4. Consider the differential equation $\frac{dy}{dx} = 6x^2 - x^2y$. Let y = f(x) be the particular solution to the differential equation with initial condition f(-1) = 2. Use Euler's method with two steps of equal size, starting at x = -1, to approximate f(0). Show the work that leads to your answer.