\qquad

6.2 Anti-differentiation: Vectors/Parametric

Net distance (displacement) over $t=a$ to $t=b$

Position @ $t=a=$ initial position + net distance

龱 A GRAPHING CALCULATOR IS REQUIRED FOR THESE QUESTIONS 図

1. A particle moving along a curve in the $x y$-plane has position $(x(t), y(t))$ at time $t \geq 0$ with $\frac{d x}{d t}=\sqrt{3 t}$ and $\frac{d y}{d t}=3 \cos \left(\frac{t^{2}}{2}\right)$. The particle is at position $(1,5)$ at time $t=4$. Find position vector of the particle at time $t=0$.
2. A particle moving along a curve in the $x y$-plane has position $(x(t), y(t))$ at time $t \geq 0$ with $\frac{d x}{d t}=3+\cos \left(t^{2}\right)$. The derivative $\frac{d y}{d t}$ is not explicitly given. At time $t=2$, the object is at position (1,8). At time $t=2$, the value of $\frac{d y}{d t}$ is -7 . Write an equation for the line tangent to the curve at the point $(x(2), y(2))$.
3. A particle moves in the $x y$-plane in such as way that its velocity vector is $\left\langle 1+t, t^{3}\right\rangle$. If the position vector at $t=0$ is $\langle 5,0\rangle$, find the position of the particle at $t=2$.
4. Point $P(x, y)$ moves in the $x y$-plane in such as way that $\frac{d x}{d t}=\frac{1}{t+1}$ and $\frac{d y}{d t}=2 t$ for $t \geq 0$. Find the coordinates of P in terms of t given that, when $t=1, x=\ln 2$ and $y=0$.
