DATE:_

Fundamental Theorem of Calculus

Using geometry, find: $\int_0^3 (x-2) dx$

Fundamental Theorem of Calculus

If f is continuous on [a, b] and F is an antiderivative of f on [a, b],

then
$$\int_{a}^{b} f(x) dx =$$

=

(NOTE: FTC also holds true for non-continuous functions, since the Newton-Leibniz Axiom states that f does not need to be continuous, but only that f is Riemann integrable)

Example:

Evaluate: $\int_0^3 (x-2) dx$

Evaluate each integral

Example 1: $\int_{1}^{2} (x^2 - 3) dx$

Example 2: $\int_1^4 \sqrt{x^3} dx$

Example 3: $\int_{-2}^{-1} \left(u - \frac{1}{u^2} \right) du$

Example 4: $\int_0^{\pi/4} \sec^2 x \, dx$ Example 5: $\int_{-8}^{-1} \frac{x-x^2}{\sqrt[3]{x}} dx$ Example 6: $\int_0^2 |2x - 1| \, dx$