1. Write the differential equation that models the following statement: The rate of change of Q with respect to t is inversely proportional to the square of t.
2. The rate of change of V is proportional to V . When $t=0, \mathrm{~V}=20,000$ and when $t=4$, $\mathrm{V}=12,500$. What is the value of V when $t=6$?
3. The rate of change of the number of coyotes $N(t)$ in a population is directly proportional to $650-N(t)$, where t is the time in years. When $t=0$, the population is 300 , and when $t=2$, the population has increased to 500 . Find the population when $t=3$.
4. A calf that weighs 60 pounds at birth gains weight at the rate $\frac{d w}{d t}=1200-w$ where w is weight in pounds and t is time in years. If the animal is sold when its weight reaches 800 pounds, find the time of sale.
5. A pizza, heated to a temperature of 350 degrees Fahrenheit $\left({ }^{\circ} \mathrm{F}\right)$, is taken out of an oven and placed in a $75^{\circ} \mathrm{F}$ room at time $t=0$ minutes. The temperature of the pizza is changing at a rate of $-110 e^{-0.4 t}$ degrees Fahrenheit per minute. To the nearest degree, what is the temperature of the pizza at time $t=5$ minutes?
(A) $112^{\circ} \mathrm{F}$
(B) $119^{\circ} \mathrm{F}$
(C) $147^{\circ} \mathrm{F}$
(D) $238^{\circ} \mathrm{F}$
(E) $335^{\circ} \mathrm{F}$
