Date _____

Polar Graphing Activity

You will explore graphs of polar equations. A polar equation is a function rule in the form $r = f(\theta)$, where θ can be measured in radians or degrees.

Use your calculator to explore the following:

- 1. Consider equations of the form: $r = a \sin \theta \\ r = a \cos \theta$ Experiment with different values for a.
 - **a.** What type of figure is created by these equations?
 - **b.** How do the figures differ when different trig functions are used (sin vs. cos)?
 - **c.** What is significant about the *a*-value?
- 2. Consider equations of the form: $r = a \pm b \sin \theta \\ r = a \pm b \cos \theta$ Limaçons

Graph together:
$$r = 2 + 5\sin\theta$$
 $r = 1 + 3\cos\theta$ Graph together: $r = 4 + 3\sin\theta$ $r = 3 + 2\cos\theta$ Graph together: $r = 4 + 4\sin\theta$ $r = 2 - 2\cos\theta$

- **a.** How do the figures differ when different trig functions are used (sin vs. cos)?
- **b.** What is it about the "a" & "b" values that determines the shape of the graph?
- **c.** What is the significance of "a + b"?
- 3. Consider equations of the form: $r = a \sin(n\theta)$ $r = a \cos(n\theta)$ Rose Curves

Graph these functions one at a time: $r = 2\sin(3\theta)$ $r = 4\sin(2\theta)$ $r = 2\cos(3\theta)$ $r = 4\cos(2\theta)$

- **a.** How do the figures differ when different trig functions are used (sin vs. cos)?
- **b.** What determines the length of a petal?
- **c.** What determines the number of petals?

4. Consider equations of the form:

$$r = a\theta + b$$
$$r = ab^{\theta}$$

To see these graphs better, do the following: ZOOM 6; change θ max to 6π ; then ZOOM 5.

a. Graph these two: $r = \theta + 2$

$$r = \theta + 2$$

Then graph these two:
$$r = 3^{\theta}$$

$$r = 2\theta$$

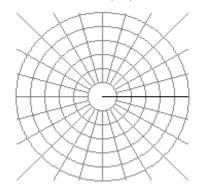
$$r = 2*3^{\theta}$$

Spirals of Archimedes

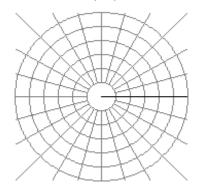
Logarithmic Spirals

- **b.** What is the difference between the Spirals of Archimedes and Logarithmic Spirals?
- **5.** Graph each of the following, one at a time.

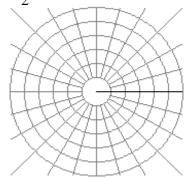
$$r = \frac{5}{6 + 8\cos\theta} \qquad r = \frac{6}{4 + 3\cos\theta} \qquad r = \frac{2}{3 + 3\cos\theta}$$


- **a.** What is the name of the shape for each figure produced?
- **b.** How are these equations related to those of the limaçons?

Polar Graphing Practice


1. What shape is the following graph? $r = 8\sin\theta$ Identify the center and radius. Then convert the equation into rectangular form.

2. Sketch accurate graphs of the following:


a. $r = 4\sin(3\theta)$

b.
$$r = 5\cos(2\theta)$$

c.
$$r = \frac{\theta}{2} + 3$$
 (Graph 2 revolutions.)

Write polar equations for the following:

- 3. A circle with radius 4.8 and oriented to the polar axis
- **4.** An example of a hyperbola oriented to the $\pi/2$ axis
- **5.** An example of an ellipse oriented to the polar axis _____