AP Practice Problems

- 1. Let g be a function with g(4) = 1 such that all points (x, y) on the graph of g satisfy the logistic differential equation $\frac{dy}{dx} = 2y(3 y)$.
 - a) Find $\lim_{x\to\infty} g(x)$ and $\lim_{x\to\infty} g'(x)$. (It is not necessary to solve for g(x) or show how you arrived at your answers.)

b) For what value of y does the graph of g have a point of inflection? Find the slope of the graph of g at the point of inflection. (It is not necessary to solve for g(x).)

2. A population is modeled by the function *P* that satisfies the logistic differential equation: $\frac{dP}{dt} = \frac{P}{5} \left(1 - \frac{P}{12} \right).$

a) If P(0) = 3, what is $\lim_{t \to \infty} P(t)$? If P(0) = 20, what is $\lim_{t \to \infty} P(t)$?

b) If P(0) = 3, for what value of P is the population growing the fastest?