MULTIPLE CHOICE

Choose the answer that gives the area of the region whose boundaries are given.

- 1. The parabola $y = x^2 3$ and the line y = 1
 - (A) $\frac{8}{3}$
 - **(B)** 32
 - (C) $\frac{32}{3}$
 - **(D)** $\frac{16}{3}$
 - (E) none of these
- 2. The parabola $y^2 = x$ and the line x + y = 2
 - (A) $\frac{5}{2}$
 - **(B)** $\frac{3}{2}$
 - (C) $\frac{11}{6}$
 - **(D)** $\frac{9}{2}$
 - **(E)** $\frac{29}{6}$
- 3. The curve of $y = \frac{2}{x}$ and x + y = 3
 - (A) $\frac{1}{2} 2 \ln 2$
 - **(B)** $\frac{3}{2}$
 - (C) $\frac{1}{2} \ln 4$
 - **(D)** $\frac{5}{2}$
 - (E) $\frac{3}{2} \ln 4$
- **4.** In the 1st quadrant, bounded below by the *x*-axis and above by the curves of $y = \sin x$ and $y = \cos x$.
 - **(A)** $2 \sqrt{2}$
 - **(B)** $2 \sqrt{2}$
 - **(C)** 2
 - **(D)** $\sqrt{2}$
 - **(E)** $2\sqrt{2}$
- 5. The area bounded by $y = e^x$, y = 1, y = 2, and x = 3 is equal to
 - $(A) 3 + \ln 2$
 - **(B)** $3 3 \ln 3$
 - $(C) 4 + \ln 2$
 - **(D)** $3 \frac{1}{2} \ln^2 2$
 - $(E) 4 \ln 4$