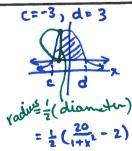


A graphing calculator is required for some problems or parts of problems.

- 1. Let R be the shaded region bounded by the graphs of $y = \sqrt{x}$ and $y = e^{-3x}$ and the vertical line x = 1, as shown in the figure above.
 - (c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a rectangle whose height is 5 times the length of its base in region R. Find the volume of this solid.

Area rectangle
$$A = bh$$


$$= b(5b)$$

$$= 5b^{2}$$

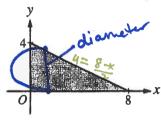
$$= 5(e^{-3x} - \sqrt{x})^{2}$$

Volume =
$$\int_{0}^{1} 5(e^{-3x} - \sqrt{x})^{2} dx$$

= 0.554

- 1. Let R be the region in the first and second quadrants bounded above by the graph of $y = \frac{20}{1+x^2}$ and below by the horizontal line y = 2.
 - (c) The region R is the base of a solid. For this solid, the cross sections perpendicular to the x-axis are semicircles. Find the volume of this solid.

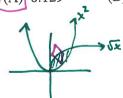
n=5(base)


Volum =
$$\int_{c}^{d} \frac{\pi}{2} \left(\frac{1}{2} \left(\frac{20}{1+x^2} - 2 \right) \right)^2 dx$$
= (74.268

- 86. The base of a solid is the region in the first quadrant bounded by the y-axis, the graph of $y = \tan^{-1} x$, the horizontal line y = 3, and the vertical line x = 1. For this solid, each cross section perpendicular to the x-axis is a square. What is the volume of the solid?
 - (A) 2.561
- (B) 6.612
- (C) 8.046
- (D) 8.755
- (E) 20.773

Volume =
$$\int_{0}^{1} (3 - \tan^{-1} x)^{2} dx$$

= 6.612



radius =
$$\frac{1}{2}$$
 (diameter)
= $\frac{1}{2}$ ($\frac{8-x}{2}$)

- 86. The base of a solid is a region in the first quadrant bounded by the x-axis, the y-axis, and the line x+2y=8, as shown in the figure above. If cross sections of the solid perpendicular to the x-axis are semicircles, what is the volume of the solid?
- 24² 8^{-x} (A) 12.566

- (D) 67.021

- semicircle Area = II (r)2
- Volume = $\int_{0}^{8} \frac{\pi}{2} \left(\frac{1}{2} \left(\frac{8-x}{2} \right)^{2} dx$ = 16.755
- 92. Let R be the region in the first quadrant bounded below by the graph of $y = x^2$ and above by the graph of $y = \sqrt{x}$. R is the base of a solid whose cross sections perpendicular to the x-axis are squares. What is the volume of the solid?
 - (A) 0.129
- (B) 0.300
- (C) 0.333
- (D) 0.700
- (E) 1.271

- Area = $(\text{side})^2$ = $(\text{Jx} \text{x}^2)^2$
- Volue = $\int_{0}^{1} (\sqrt{x} x^{2})^{2} dx$