DATE:

Volume Using Cross Sections

A cross section is the shape we get when cutting straight through an object, a view into the inside made by cutting through the object.

Visualizing Volume using the Area of a Cross Section

Example:

- Sketch the area between the graphs of
$y=-\frac{1}{12} x^{3}+\frac{1}{6} x^{2}+\frac{11}{12} x-1$ and
$y=\frac{1}{12} x^{3}-\frac{1}{6} x^{2}-\frac{11}{12} x+1$ on the interval $[1,4]$.
- Use this area as the base of a 3-dimensional solid where the cross sections are semi-circles.
- Sketch a 3-D image of this solid.

Finding the Volume using the Area of a Cross Section

Example:

Let R be the region bounded by the graphs of
$y=-\frac{1}{12} x^{3}+\frac{1}{6} x^{2}+\frac{11}{12} x-1$ and $y=\frac{1}{12} x^{3}-\frac{1}{6} x^{2}-\frac{11}{12} x+1$ on the interval $[1,4]$.
Find the volume of the solid that has R as its base if every cross section by a plane perpendicular to the x-axis are semi-circles.

Volume Using Cross Sections:
(1) Identify the shape of the cross section
(2) Find the area of that cross section
(3) Sum up the total \# of cross sections to get the volume

