- Let R be the region enclosed by the graphs of $y = 2 \ln x$, $y = \frac{x}{2}$ and the lines x = 2 and x = 8.
- 1. Set-up, <u>but do not integrate</u>, an integral expression, in terms of a single variable, for the volume of the solid generated when R is revolved about the *x*-axis.

2. Set-up, <u>but do not integrate</u>, an integral expression, in terms of a single variable, for the volume of the solid generated when R is revolved about the line x = -1.

VOLUME (Disk & Washer) MULTIPLE-CHOICE

1. Find the volume of the solid bounded by $y = x^2$, x = 2, and y = 0, revolved about the *x*-axis.

(A)
$$\frac{64\pi}{3}$$
 (B) 8π (C) $\frac{8\pi}{3}$ (D) $\frac{128\pi}{5}$ (E) $\frac{32\pi}{5}$

2. Find the volume of the solid bounded by $y = x^2$, x = 2, and y = 0, revolved about the y-axis.

(A)
$$\frac{16\pi}{3}$$
 (B) 4π (C) $\frac{32\pi}{5}$ (D) 8π (E) $\frac{8\pi}{3}$

3. Find the volume of the solid bounded by $y = x^2$, x = 0, y = 0, and y = 4, revolved about the *y*-axis.

(A)
$$8\pi$$
 (B) 4π (C) $\frac{64\pi}{3}$ (D) $\frac{32\pi}{3}$ (E) $\frac{16\pi}{3}$

4. Find the volume of the solid bounded by $y = x^2$, y = 4, revolved about the *x*-axis.

(A)
$$\frac{64\pi}{5}$$
 (B) $\frac{512\pi}{15}$ (C) $\frac{256\pi}{5}$ (D) $\frac{128\pi}{5}$ (E) none of these

5. Find the volume of the solid bounded by $y = x^2$, y = 4, revolved about the *line* y = 4.

(A)
$$\frac{256\pi}{15}$$
 (B) $\frac{256\pi}{5}$ (C) $\frac{512\pi}{5}$ (D) $\frac{512\pi}{15}$ (E) $\frac{64\pi}{3}$