

K= 0.942

- 1. Let R be the shaded region in the first quadrant enclosed by the graphs of $y = e^{-x^2}$, $y = 1 \cos x$, and the y-axis, as shown in the figure above.
 - (a) Find the area of the region R.
 - (b) Find the volume of the solid generated when the region R is revolved about the x-axis.
 - (c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of this solid.

a) Area of
$$R = \int_{0}^{k} (e^{-x^{2}} - (1 - \cos x)) dx$$

= 0.591
b) Volume = $\pi \int_{0}^{k} ((e^{-x^{2}})^{2} - (1 - \cos x)^{2}) dx$ WASHER
= 1.747
c) $V = \int_{0}^{k} (\sin x)^{2} dx$ Of $\sin x = (\sin x)^{2}$
= $\int_{0}^{k} (e^{-x^{2}} - (1 - \cos x))^{2} dx$ = $(e^{x^{2}} - (1 - \cos x))^{2}$

AP® CALCULUS AB 2002 SCORING GUIDELINES (Form B)

Question 1

Let R be the region bounded by the y-axis and the graphs of $y = \frac{x^3}{1+x^2}$ and y = 4-2x, as shown in the figure above.

- (a) Find the area of R.
- (b) Find the volume of the solid generated when R is revolved about the x-axis.
- (c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of this solid.

a) Area of
$$R = \int_{0}^{M} \left(4-2x-\frac{x^{3}}{1+x^{2}}\right) dx$$

= 3.215

=
$$S^{M}(side)^{2}dx$$

= $S^{M}(4-2x-\frac{x^{3}}{1+x^{2}})^{2}dx$
= 8.997

Area =
$$(4-2x-\frac{x^3}{1+x^2})^2$$