Arc Length Practice

1. The length of the curve $y=\ln (\sec x)$ from $x=0$ to $x=b$, where $0<b<\frac{\pi}{2}$, may be expressed by which of the following integrals?
(A) $\int_{0}^{b} \sec x d x$
(B) $\int_{0}^{b} \sec ^{2} x d x$
(C) $\int_{0}^{b}(\sec x \tan x) d x$
(D) $\int_{0}^{b} \sqrt{1+\left(\ln (\sec (x))^{2}\right.} d x$
(E) $\int_{0}^{b} \sqrt{1+\left(\sec ^{2} x \tan ^{2} x\right)} d x$
2. The length of the curve $y=x^{3}$ from $x=0$ to $x=2$ is given by:
(A) $\int_{0}^{2} \sqrt{1+x^{6}} d x$
(B) $\int_{0}^{2} \sqrt{1+3 x^{2}} d x$
(C) $\pi \int_{0}^{2} \sqrt{1+9 x^{4}} d x$
(D) $2 \pi \int_{0}^{2} \sqrt{1+9 x^{4}} d x$
(E) $\int_{0}^{2} \sqrt{1+9 x^{4}} d x$
3. What is the length of the arc of $y=\frac{2}{3} x^{3 / 2}$ from $x=0$ to $x=3$?
(A) $\frac{8}{3}$
(B) 4
(C) $\frac{14}{3}$
(D) $\frac{16}{3}$
(E) 7
4. The length of a curve from $x=1$ to $x=4$ is given by $\int_{1}^{4} \sqrt{1+9 x^{4}} d x$. If the curve contains the point $(1,6)$, which of the following could be an equation for this curve?
(A) $y=3+3 x^{2}$
(B) $y=5+x^{3}$
(C) $y=6+x^{3}$
(D) $y=6-x^{3}$
(E) $y=\frac{16}{5}+x+\frac{9}{5} x^{5}$
5. Find the exact length of the given curve $y=x^{3 / 2}$ from $x=0$ to $x=3$.
(4.4. Find the exact length of the given curve $y=\frac{3}{4} x^{4 / 3}-\frac{3}{8} x^{2 / 3}$ from $x=1$ to $x=8$.

1
7. Let R be the region bounded by the graphs of $y=\sin (\pi x)$ and $y=x^{3}-4 x$ on [0,2]. Find the perimeter of the region R.

