Arc Length Practice

- 1. The length of the curve $y = \ln(\sec x)$ from x = 0 to x = b, where $0 < b < \frac{\pi}{2}$, may be expressed by which of the following integrals?
 - (A) $\int_{0}^{b} \sec x \, dx$ (B) $\int_{0}^{b} \sec^{2} x \, dx$ (C) $\int_{0}^{b} (\sec x \tan x) \, dx$ (D) $\int_{0}^{b} \sqrt{1 + (\ln(\sec(x))^{2})} \, dx$ (E) $\int_{0}^{b} \sqrt{1 + (\sec^{2} x \tan^{2} x)} \, dx$
- 2. The length of the curve $y = x^3$ from x = 0 to x = 2 is given by:

(A)
$$\int_0^2 \sqrt{1 + x^6} dx$$

(B) $\int_0^2 \sqrt{1 + 3x^2} dx$
(C) $\pi \int_0^2 \sqrt{1 + 9x^4} dx$
(D) $2\pi \int_0^2 \sqrt{1 + 9x^4} dx$
(E) $\int_0^2 \sqrt{1 + 9x^4} dx$

- 3. What is the length of the arc of $y = \frac{2}{3}x^{3/2}$ from x = 0 to x = 3?
 - (A) $\frac{8}{3}$
 - (B) 4
 - (C) $\frac{14}{3}$
 - (D) $\frac{16}{3}$
 - (E) 7
- 4. The length of a curve from x = 1 to x = 4 is given by $\int_{1}^{4} \sqrt{1 + 9x^4} dx$. If the curve contains the point (1,6), which of the following could be an equation for this curve?
 - (A) $y = 3 + 3x^{2}$ (B) $y = 5 + x^{3}$ (C) $y = 6 + x^{3}$ (D) $y = 6 - x^{3}$ (E) $y = \frac{16}{5} + x + \frac{9}{5}x^{5}$

5. Find the exact length of the given curve $y = x^{3/2}$ from x = 0 to x = 3.

 $\boxtimes 6.$ Find the exact length of the given curve $y = \frac{3}{4}x^{4/3} - \frac{3}{8}x^{2/3}$ from x = 1 to x = 8.

\

⊠ 7. Let R be the region bounded by the graphs of y = sin(πx) and $y = x^3 - 4x$ on [0,2]. Find the perimeter of the region R.