8.1 Circles & Parabolas

Target 4A: Investigate the geometric properties of parabolas (vertex, focus, and directrix)

Target 4B: Derive the standard equation of a parabola and graph given two or three criteria

Review of Prior Concepts

https://youtu.be/yaSpxDdKEAs

What do you know about Conic Sections?

More Practice

Introduction to Conics

https://www.khanacademy.org/math/algebra2/intro-to-conics-alg2

http://www.coolmath.com/algebra/25-conic-sections/01-introduction-circles-01

https://www.mathsisfun.com/geometry/conic-sections.html

https://www.youtube.com/watch?v=ky5Q6hEtjKk

https://www.youtube.com/watch?v=GDHNoQHQmtQ

https://www.youtube.com/watch?v=SKNybVUuPXA

SAT Connection

Passport to Advanced Math

12. Understand a nonlinear relationship between two variables

Example: Which of the following is an equation of a circle in

the xy-plane with center (0,4) and a radius with

endpoint
$$\left(\frac{4}{3}, 5\right)$$
 ?

A)
$$x^2 + (y-4)^2 = \frac{25}{9}$$

B)
$$x^2 + (y+4)^2 = \frac{25}{9}$$

C)
$$x^2 + (y-4)^2 = \frac{5}{3}$$

D)
$$x^2 + (y+4)^2 = \frac{3}{5}$$

Solution

Circle

Definition (in your own words)

Standard Form of Equation	$(x-h)^2 + (y-k)^2 = r^2$	Sketch
Center		
Radius		
Eccentricity		

Examples

Examples			
Standard Form of Equation	$x^2 + y^2 = 36$	$(x-3)^2 + (y+1)^2 = 16$	
Center			
Radius			
Eccentricity			
Sketch			

Parabola				
Definition (in your own words)	The focus lies on the axis of symmetry. The directrix is perpendicular to the axis of symmetry. between the focus and the directrix.			

Vertical Ax	is (of Symmetry)	Sample Sketch	Example
Standard Form of Equation	$(x-h)^2 = 4p(y-k)$	4p > 0	$x^2 = -8(y-2)$
Opening		x = h	
Vertex		(h, k+p)	
Focus		y=k-p (h,k)	
Directrix		- ×	
Axis of Symmetry		4p < 0	
Focal Length		$y = k - p \qquad \qquad x = h $ (h, k)	
Focal Width		(h+p,k)	
Eccentricity			

Horizontal A	xis (of Symmetry)	Sketch	Example
Standard Form of Equation	$(y-k)^2 = 4p(x-h)$	4p > 0	$y^2 = 12(x-2)$
Opening			
Vertex		y = k	
Focus		$(h + \rho, k)$	
Directrix		((', 'A)	
Axis of Symmetry		x = h - p	
Focal Length		4p < 0 $y = k$	
Focal Width		(h+p,k) (h,k) $x = h-p$	
Eccentricity		•	

Examples:

1. Find the vertex, focus, directrix, and focal width of the parabola: $(y + 4)^2 = 6x - 12$

2. Find an equation in standard form for the parabola that satisfies the given conditions: vertex (0,0), focus (0,2)

3. Find an equation in standard form for the parabola that satisfies the given conditions: focus (-4,0), directrix x=4

4. Find an equation in standard form for the parabola that satisfies the given conditions: vertex (3,5), directrix y = 7

5. What is the relationship between the vertex, focus, and directrix in the parabola?

More Practice

Circles

http://www.regentsprep.org/regents/math/algtrig/atc1/circlelesson.htm

http://www.mathsisfun.com/algebra/circle-equations.html

http://www.mathwarehouse.com/geometry/circle/equation-of-a-circle.php

https://www.youtube.com/watch?v=FLM3xlqw3WY

https://www.youtube.com/watch?v=6r1GQCxyMKI

Parabolas

http://www.purplemath.com/modules/parabola3.htm

http://www.protutorcompany.com/finding-the-vertex-focus-and-directrix-of-a-parabola-given-in-

standard-form/

https://braingenie.ck12.org/skills/108316

https://www.youtube.com/watch?v=qxjs3NHI5T8

https://www.youtube.com/watch?v=a3qUuSqxzBk

Homework Assignment

p.639 #1,3,7-10all,11,13,15

SAT Connection

Solution

Choice A is correct. The equation of a circle can be written as $(x - h)^2 + (y - k)^2 = r^2$ where (h, k) are the coordinates of the center of the circle and r is the radius of the circle. Since the coordinates of the center of the circle are (0, 4), the equation is $x^2 + (y - 4)^2 = r^2$, where r is the radius. The radius of the circle is the distance from the center, (0, 4), to the given endpoint of a radius, $\left(\frac{4}{3}, 5\right)$. By the distance formula, $r^2 = \left(\frac{4}{3} - 0\right)^2 + (5 - 4)^2 = \frac{25}{9}$. Therefore, an equation of the given circle is $x^2 + (y - 4)^2 = \frac{25}{9}$.

Choice B is incorrect; it results from the incorrect equation $(x + h)^2 + (y + k)^2 = r^2$. Choice C is incorrect; it results from using r instead of r^2 in the equation for the circle. Choice D is incorrect; it results from using the incorrect equation $(x + h)^2 + (y + k)^2 = \frac{1}{r}$.