

Note: Figure not drawn to scale.

The shaded regions R_1 and R_2 shown above are enclosed by the graphs of $f(x) = x^2$ and $g(x) = 2^x$.

- (a) Find the x- and y-coordinates of the three points of intersection of the graphs of f and g.
- (b) Without using absolute value, set up an expression involving one or more integrals that gives the total area enclosed by the graphs of f and g. Do not evaluate.

a) point
$$B \Rightarrow (2,4)$$
 $b=2$

Point $C \Rightarrow (4,16)$ $C=4$

Point $A \Rightarrow (-.767, 0.588)$ $a=-.767$

1997 BC3

Let R be the region enclosed by the graphs of $y = \ln(x^2 + 1)$ and $y = \cos x$.

(a) Find the area of
$$R$$
.

$$D = .916$$

$$E = .916$$

Area of
$$R = \frac{1}{4\pi} \int_{0}^{E} (\cos x - \ln(x^{2}+1)) dx = 1.168$$

Area of $R = 2 \int_{0}^{E} (\cos x - \ln(x^{2}+1)) dx$