DATE: $\qquad$

### 9.2 Taylor Series

Recall the Power Series:
$f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\cdots+c_{n}(x-a)^{n}+\cdots$
for $x=a, f(a)=$
so, $c_{0}=$
$f^{\prime}(x)=c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+4 c_{4}(x-a)^{3}+\cdots+n c_{n}(x-a)^{n-1}+\cdots$
then, $f^{\prime}(a)=$
so, $c_{1}=$
$f^{\prime \prime}(x)=2 c_{2}+2 \cdot 3 c_{3}(x-a)+3 \cdot 4 c_{4}(x-a)^{2}+\cdots+(n-1) n \cdot c_{n}(x-a)^{n-2}+\cdots$ then, $f^{\prime \prime}(a)=$
so, $c_{2}=$
$f^{\prime \prime \prime}(x)=2 \cdot 3 c_{3}+2 \cdot 3 \cdot 4 c_{4}(x-a)+\cdots+(n-2)(n-1) n \cdot c_{n}(x-a)^{n-3}+\cdots$ then, $f^{\prime \prime \prime}(a)=$
so, $c_{3}=$

Do you see a pattern?
Predict $f^{(n)}(a)=$
so, $c_{n}=$

Therefore, the Power Series:
$f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\cdots+c_{n}(x-a)^{n}+\cdots$
can now be written as the

## Taylor Series

$$
\begin{aligned}
f(x) & =\quad+\quad(x-a)+\quad(x-a)^{2}+\quad(x-a)^{3}+\cdots+\quad(x-a)^{n}+\cdots \\
& =\sum_{k=}^{\infty} \quad(x-a)^{k}
\end{aligned}
$$

and the partial sum, called the
Taylor Polynomial of order $n$ for $f(x)$

$$
\begin{aligned}
P_{n}(x) & =+(x-a)+\quad(x-a)^{2}+\quad(x-a)^{3}+\cdots+\quad(x-a)^{n} \\
& =\sum_{k=}^{n} \quad(x-a)^{k}
\end{aligned}
$$

where $f$ is generated (centered) @ $x=a$

For a more specific case, we have:

$$
\begin{aligned}
& \text { Maclaurin Series } \\
& f(x)=\quad+\quad x+\quad x^{2}+\quad x^{3}+\cdots+\quad x^{n}+\cdots \\
&=\sum_{k=}^{\infty} \quad x^{k}
\end{aligned}
$$

where $f$ is generated (centered) @ $x=0$

Examples:
Find the Maclaurin Series of $f(x)=e^{x}$
Find the Taylor Series for $f(x)=e^{x}$ at $x=2$.

Construct a fifth order Taylor Polynomial for $\sin x$ at $x=0$.

Find a Taylor Polynomial of order 3
generated by $f(x)=\frac{1}{x}$ at $x=1$.

