Parametric/Vector Curves (Arc Length)

Parametric Functions \rightarrow

Vectors \rightarrow

Recall:

Distance =

Sum of *n* segments
$$=\sum_{k=1}^{n}$$

Sum of infinite # of segments

$$= \sum_{k=1}^{n}$$
$$= \sum_{k=1}^{n}$$

Length of a Parametric Curve/Vector

Length of a Parametric/Vector Curve = (Arc Length) *Example 1:* Find the length of the parametric curve $x = t^{3/2}$ and y = 2t - 1 on [0,8].

Example 2:

A particle moves along a curve so that its position is (x(t), y(t)) where $x(t) = t^2 - 4t + 8$

and $\frac{dy}{dt} = te^{t-3} - 1$, where x and y are measured in meters and t is measured in seconds.

a) Find the speed of the particle at t = 3.

b) Find the total distance traveled by the particle for $0 \le t \le 4$ seconds.