\qquad

Parametric/Vector Curves (Arc Length)

Parametric Functions \rightarrow

Vectors \rightarrow

Recall:
Distance $=$

Sum of n segments $=\sum_{k=1}^{n}$
Sum of infinite \# of segments

$$
\begin{aligned}
& =\quad \sum_{k=1}^{n} \\
& =\quad \sum_{k=1}^{n}
\end{aligned}
$$

Length of a Parametric Curve/Vector

Length of a
 Parametric/Vector Curve =
 (Arc Length)

Example 1:

Find the length of the parametric curve $x=t^{3 / 2}$ and $y=2 t-1$ on $[0,8]$.

Example 2:

A particle moves along a curve so that its position is $(x(t), y(t))$ where $x(t)=t^{2}-4 t+8$ and $\frac{d y}{d t}=t e^{t-3}-1$, where x and y are measured in meters and t is measured in seconds.
a) Find the speed of the particle at $t=3$.
b) Find the total distance traveled by the particle for $0 \leq t \leq 4$ seconds.

