AP Practice Power Series/Taylor Series

- 1. What is the approximation of the value of sin 1 obtained by using the fifth-degree Taylor polynomial about x = 0 for sin x?
 - (A) $1 \frac{1}{2} + \frac{1}{24}$ (B) $1 - \frac{1}{2} + \frac{1}{4}$ (C) $1 - \frac{1}{3} + \frac{1}{5}$ (D) $1 - \frac{1}{4} + \frac{1}{8}$ (E) $1 - \frac{1}{6} + \frac{1}{120}$
- 2. If $\sum_{n=0}^{\infty} a_n x^n$ is a Taylor series that converges to f(x) for all real x, then f'(1) =
 - **(A)** 0
 - **(B)** *a*₁
 - (C) $\sum_{n=0}^{\infty} a_n$
 - (**D**) $\sum_{n=1}^{\infty} na_n$
 - (E) $\sum_{n=1}^{\infty} n a_n^{n-1}$
- ~
- 3. The graph of the function represented by the Maclaurin series $1 x + \frac{x^2}{2!} \frac{x^3}{3!} + \dots + \frac{(-1)^n x^n}{n!} + \dots$ intersects the graph of $y = x^3$ at x =
 - (A) 0.773
 - **(B)** 0.865
 - **(C)** 0.929
 - **(D)** 1.000
 - **(E)** 1.857

- 4. The coefficient of x^6 in the Taylor series expansion about x = 0 for $f(x) = \sin(x^2)$ is
 - (A) $-\frac{1}{6}$ (B) 0
 - (C) $\frac{1}{120}$
 - **(D)** $\frac{1}{6}$
 - **(E)** 1
- 5. If $f(x) = \sum_{k=1}^{\infty} (\sin^2 x)^k$, then f(1) is
 - (A) 0.369
 - **(B)** 0.585
 - **(C)** 2.400
 - **(D)** 2.426
 - **(E)** 3.426

- 6. The interval of convergence of $\sum_{n=0}^{\infty} \frac{(x-1)^n}{3^n}$ is
 - (A) $-3 < x \le 3$
 - $(\mathbf{B}) \ -3 \le x \le 3$
 - (C) -2 < x < 4
 - $(\mathbf{D}) \ -2 \le x \le 4$
 - $(\mathbf{E}) \quad 0 \le x \le 2$

AP Practice Power Series/Taylor Series

Let *f* be a function that has derivatives of all orders for all real numbers. Assume f(0) = 5, f'(0) = -3, f''(0) = 1, and f'''(0) = 4.

- (a) Write the third-degree Taylor polynomial for f about x = 0 and use it to approximate f(0.2).
- (b) Write the fourth-degree Taylor polynomial for g, where $g(x) = f(x^2)$, about x = 0.
- (c) Write the third-degree Taylor polynomial for h, where $h(x) = \int_0^x f(t)dt$, about x = 0.
- (d) Let h be defined as in part (c). Given that f(1) = 3, either find the exact value of h(1) or explain why it cannot be determined.