HW5 - AP Taylor Series Practice

因

1. The function f has derivatives of all orders for all real numbers x. Assume $f(2)=-3$, $f^{\prime}(2)=5, f^{\prime \prime}(2)=3$, and $f^{\prime \prime \prime}(2)=-8$.
a) Write a third-degree Taylor polynomial for f about $x=2$ and use it to approximate $f(1.5)$.
b) Write the fourth-degree Taylor polynomial, $P(x)$. For $g(x)=f\left(x^{2}+2\right)$ about $x=0$. Use P to explain why g must have a relative minimum at $x=0$.
2. The Taylor series about $x=5$ for a certain function f converges to $f(x)$ for all x in the interval of convergence. The nth derivative of f at $x=5$ is given by $f^{(n)}(5)=\frac{(-1)^{n} n!}{2^{n}(n+2)}$ and $f(5)=\frac{1}{2}$. Write the third-degree Taylor polynomial for f about $x=5$.
3. The Maclaurin series for the function f is given by:

$$
f(x)=\sum_{n=0}^{\infty} \frac{(2 x)^{n+1}}{n+1}=2 x+\frac{4 x^{2}}{2}+\frac{8 x^{3}}{3}+\frac{16 x^{4}}{4}+\cdots+\frac{(2 x)^{n+1}}{n+1}+\cdots
$$

a) Find the first four terms and the general term for the Maclaurin series for $f^{\prime}(x)$.
b) Use the Maclaurin series you found in part (b) to find the value of $f^{\prime}\left(-\frac{1}{3}\right)$
4. Let f be the function given by $f(x)=\sin \left(5 x+\frac{\pi}{4}\right)$, and let $P(x)$ be the third-degree Taylor polynomial for f about $x=0$.
a) Find $P(x)$.
b) Find the coefficient of x^{22} in the Taylor series for f about $x=0$.
c) Let G be the function given by $G(x)=\int_{0}^{x} f(t) d t$. Write the third-degree Taylor polynomial for G about $x=0$.

