9.3 Taylor's Theorem

Recall the Taylor Series, centered at x = a:

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + \dots = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x - a)^n$$

Recall Taylor's Polynomial approximation of f(x):

$$P_n(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n$$

then,

$$f(x) - P_n(x) =$$

 \leq

Error/Remainder

$$R_n(x) =$$

LaGrange Error Bound

$$|R_n(x)| = |f(x) - P(x)|$$

≤

≤

Lagrange Error Bound

Example 1:

Estimate the error of sin(0.2) from the Taylor Polynomial of order 4.

