\qquad

Lagrange Error Bound Practice

1. The function f has derivatives of all orders for all real numbers x. Assume $f(2)=-3$, $f^{\prime}(2)=5, f^{\prime \prime}(2)=3$, and $f^{\prime \prime \prime}(2)=-8$.
a) Write the third-degree Taylor polynomial for f about $x=2$ and use it to approximate $f(1.5)$.
b) The fourth derivative of f satisfies the inequality $\left|f^{(4)}(x)\right| \leq 3$ for all x in the closed interval [1.5,2]. Use the Lagrange error bound on the approximation to $f(1.5)$ found in part (a) to explain why $f(1.5) \neq-5$.
2. Let f be the function given by $f(x)=\sin \left(5 x+\frac{\pi}{4}\right)$, and let $P(x)$ be the third-degree Taylor polynomial for f about $x=0$. Use the Lagrange error bound to show that $\left|f\left(\frac{1}{10}\right)-P\left(\frac{1}{10}\right)\right|<\frac{1}{100}$
3. Let f be a function having derivatives of all orders for all real numbers. The third-degree Taylor polynomial for f about $x=2$ is given by $T(x)=7-9(x-2)^{2}-3(x-2)^{3}$.
a) Use $T(x)$ to find an approximation for $f(0)$.
b) The fourth derivative of f satisfies the inequality $\left|f^{(4)}(x)\right| \leq 6$ for all x in the closed interval [0,2]. Use the Lagrange error bound on the approximation to $f(0)$
