Alternating Series Error Bound

Given

$$
\sum(-1)^{n} a_{n}
$$

the remainder/error is found by looking at the first unused term

$$
\begin{aligned}
\left|R_{n}(x)\right| & =\left|f(x)-P_{n}(x)\right| \\
\text { remainder } & =\text { function - polynovind }
\end{aligned}
$$

Because the series is alternating with individual terms that decrease in absolute value to zero, the remainder is less than or equal to the absolute value of the first unused term.

. Example 1:

Find the error involved in calculating the sum of the first six terms of the series:

Example 2:

. Find the error involved in calculating the sum of the first six terms of the series:
$\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}$

alternating series w/ mourideal terms decreases in abs.valee to 0 .

- Example 3:

Estimate the error of $\sin (0.2)$ from the Taylor Polynomial of order 4.

$$
\begin{aligned}
& \sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)^{n}}
\end{aligned}
$$

