\qquad

Area with Polar Curves

Estimate the area formed by the polar function $r=1-\cos \theta$.

Finding the Area Inside a Polar Curve

Now, thinking about Polar Curves:
Can we estimate the area the same way with a polar curve? Yes / No
[*Remember polar points are $(r, \theta), \operatorname{not}(x, y)$]

What should be used instead of area of rectangles? \qquad
Area of a Sector $=\frac{\theta}{2 \pi} \cdot \pi r^{2}$

$$
=
$$

$$
=
$$

Sum of n sectors $=\sum_{k=1}^{n} \frac{1}{2}(f(\theta))^{2} \Delta \theta_{k}$
$\underset{\text { \# of sectors }}{\text { Sum of infinite }}=\quad \sum_{k=1}^{n} \frac{1}{2}(f(\theta))^{2} \Delta \theta_{k}$
$=\quad \sum_{k=1}^{n} \frac{1}{2}(f(\theta))^{2} \Delta \theta_{k}$

Area with Polar Curves

Example 1:

Find the area formed by the polar function $r=1-\cos \theta$.

Example 2:
Setup the area inside the polar function $r=3 \cos 2 \theta$.因Then, use a graphing calculator to evaluate the area.

Example 3:

Setup the area inside the polar function $r=4 \sin 3 \theta$.因Then, use a graphing calculator to evaluate the area.

Example 4:
Setup, but do not evaluate, an integral to find the area inside the polar curve $r=2+4 \sin \theta$.

