9.4 Radius of Convergence

Two More Convergence Tests

Recall comparison test from section 8.4, if $0 \le f(x) \le g(x)$

- 1) and $\int g(x)dx$ converges, then $\int f(x)dx$ also converges.
- 2) and $\int f(x)dx$ diverges, then $\int g(x)dx$ also diverges.

Direct Comparison Test

If $\sum a_n$ has no negative terms,

- ① $a_n \le c_n$ and $\sum c_n$ converges, then $\sum a_n$
- ② $d_n \le a_n$ and $\sum d_n$ diverges, then $\sum a_n$

Ratio Test

If $\sum a_n$ has no negative terms and

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L$$

then,

- ① if L < 1, then the series _____
- \bigcirc if L > 1, then the series _____
- \Im if L=1, then the test fails.

Determine if the series converges or diverges.

Example 1

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$

Example 2

$$\sum_{n=0}^{\infty} n^2 e^{-n}$$

$$\sum_{n=0}^{\infty} n! e^{-n}$$

Recall that a geometric series converges when |r| < 1

Radius of Convergence Theorem

Convergence for a Power Series, $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$, occurs in one of 3 ways:

③ the series converges only at x = a _____

Find the radius of convergence and the interval of convergence.

Example 1

$$\sum_{n=0}^{\infty} 2^n x^{n+2}$$

Example 2

$$\sum_{n=0}^{\infty} (x+5)^n$$

Example 3
$$\sum_{n=0}^{\infty} \frac{2^n}{n+1}$$

Example 4
$$\sum_{n=0}^{\infty} \frac{n}{2^n} (x-3)^n$$

Example 5
$$\sum_{n=1}^{\infty} n! (x-2)^n$$