\qquad

Radius of Convergence M/C Practice

1. Which of the following statements are true about the series $\sum_{n=1}^{\infty} \frac{n^{2}+1}{n^{5}-n^{2} \sqrt{3}}$?
I. This series converges because $\lim _{n \rightarrow \infty} \frac{n^{2}+1}{n^{5}-n^{2} \sqrt{3}}=0$.
II. This series converges by the Ratio Test.
(A) I only
(B) II only
(C) Both I and II
(D) Neither I nor II
2. Which of the following series converge?
I. $\quad \sum_{n=0}^{\infty} \frac{5 n}{2 n+1}$
II. $\sum_{n=1}^{\infty} \frac{e^{n}}{n}$
III. $\sum_{n=0}^{\infty} \frac{e^{n}+1}{e^{n}}$
(A) I only
(B) II only
(C) I and II only
(D) I and III only
(E) I, II, and III only
3. The radius of convergence for the series $\sum_{n=0}^{\infty} \frac{n^{2}(x-10)^{n}}{10^{n}}$ is
(A) 1
(B) $\frac{1}{10}$
(C) 10
(D) $\frac{n}{10}$
(E) ∞
4. The radius of convergence for the series $\sum_{n=0}^{\infty} \frac{(x-3)^{n}}{n!}$ is
(A) 0
(B) 1
(C) $\frac{1}{n!}$
(D) n !
(E) ∞
5. The radius of convergence for the series $\sum_{n=0}^{\infty} \frac{(x-5)^{n}}{\sqrt{n}}$ is
(A) 0
(B) 1
(C) $\frac{1}{n!}$
(D) n !
(E) ∞
