Radius of Convergence M/C Practice

- 1. Which of the following statements are true about the series $\sum_{n=1}^{\infty} \frac{n^2 + 1}{n^5 n^2 \sqrt{3}}$?
 - I. This series converges because $\lim_{n\to\infty} \frac{n^2+1}{n^5-n^2\sqrt{3}} = 0$.
 - II. This series converges by the Ratio Test.
 - (A) I only
 - **(B)** II only
 - (C) Both I and II
 - (**D**) Neither I nor II

2. Which of the following series converge?

$$I. \quad \sum_{n=0}^{\infty} \frac{5n}{2n+1}$$

II.
$$\sum_{n=1}^{\infty} \frac{e^n}{n}$$

III.
$$\sum_{n=0}^{\infty} \frac{e^n + 1}{e^n}$$

- (A) I only
- **(B)** II only
- (C) I and II only
- **(D)** I and III only
- (E) I, II, and III only

- 3. The radius of convergence for the series $\sum_{n=0}^{\infty} \frac{n^2(x-10)^n}{10^n}$ is
 - **(A)** 1
 - **(B)** $\frac{1}{10}$
 - **(C)** 10
 - **(D)** $\frac{n}{10}$
 - **(E)** ∞

- **4.** The radius of convergence for the series $\sum_{n=0}^{\infty} \frac{(x-3)^n}{n!}$ is
 - **(A)** 0
 - **(B)** 1
 - (C) $\frac{1}{n!}$
 - **(D)** n!
 - **(E)** ∞
- 5. The radius of convergence for the series $\sum_{n=0}^{\infty} \frac{(x-5)^n}{\sqrt{n}}$ is
 - **(A)** 0
 - **(B)** 1
 - (C) $\frac{1}{n!}$
 - **(D)** n!
 - **(E)** ∞