1

Unit 7: Day 6 Scavenger Hunt

Find the 8^{th} term in the geometric sequence if $a_4 = 8$ and $a_7 = 64$.

128

Unit 7: Day 6 Scavenger Hunt

Find the nth term of a geometric

sequence if a₂=1/30, and a₈=1/468750

$a_n = \frac{1}{6} \cdot \left(\frac{1}{5}\right)^{n-1}$

Unit 7: Day 6 Scavenger Hunt

Find a_n for the arithmetic sequence if: $a_1=21$ and d=-3

 $a_n = -3n + 24$

Find the 4^{th} term of $(x - 4)^6$

$-1280x^{3}$

Unit 7: Day 6 Scavenger Hunt

Find: (n+2)!n!

$n^2 + 3n + 2$

Unit 7: Day 6 Scavenger Hunt

What is the 5th term for:

 $(2x-3)^8$

$90720x^4$

Unit 7: Day 6 Scavenger Hunt

Find a_n for the arithmetic sequence if $a_3=3$ and $a_{12}=39$

 $a_n = 4n - 9$

Find the sum of the coefficients of $(3p-5q)^3$

-8

Unit 7: Day 6 Scavenger Hunt

Find the 10th term in a geometric

sequence if a₃=8/9 and a₆=64/243

1024 19683

Unit 7: Day 6 Scavenger Hunt

Find the nth term of a geometric sequence if $a_3=54$ and $a_{10}=118098$

$a_n = 6 \cdot 3^{n-1}$

Unit 7: Day 6 Scavenger Hunt

Find a_n for the arithmetic sequence if a_1 =-6 and d=5

$a_n = 5n - 11$

Unit 7: Day 6 Scavenger Hunt

Find the 2^{nd} term of $(x+7)^6$

 $42x^{5}$

Unit 7: Day 6 Scavenger Hunt

$n^2 + n + 1$

Unit7: Day 6 Scavenger Hunt

What is the 8th term in: $(4x-y)^9$

 $-576x^2y^7$

Find a_n for the arithmetic sequence if: $a_4=4$ and $a_{11}=0.5$

$a_n = -0.5n + 6$

Unit 7: Day 6 Scavenger Hunt

Find the sum of the coefficients of:

 $(9x - 10y)^{6}$

Find the sum of the coefficients of:

Write the series using summation notation and find the sum of the series:

3+10+17+...+101

Find the sum of the coefficients of:

Write the series using summation notation and find the sum of the series:

 $111+108+105+\ldots+27$

Find the sum of the coefficients of:

Write the series using summation notation and find the sum of the series:

2+4+6+...+70