AP Series Problems

1. A function \(f \) is defined by \(f(x) = \frac{1}{3} + \frac{2}{3^2}x + \frac{3}{3^3}x^2 + \cdots + \frac{n+1}{3^n+1}x^n + \cdots \) for all \(x \) in the interval of convergence of the given power series. Find the interval of convergence for this power series. Show the work that leads to your answer.

2. The function \(f \) has a Taylor series about \(x = 2 \) that converges to \(f(x) \) for all \(x \) in the interval of convergence. The \(n \)th derivative of \(f \) at \(x = 2 \) is given by \(f^{(n)}(x) = \frac{(n+1)!}{3^n} \) for \(n \geq 1 \), and \(f(2) = 1 \).
 a) Write the first four terms and the general term of the Taylor series for \(f \) about \(x = 2 \).
 b) Find the radius of convergence for the Taylor series for \(f \) about \(x = 2 \). Show the work that leads to your answer.
 c) Let \(g \) be a function satisfying \(g(2) = 3 \) and \(g'(x) = f(x) \) for all \(x \). Write the first four terms and the general term of the Taylor series for \(g \) about \(x = 2 \).
 d) Does the Taylor series for \(g \) as defined in part (c) converge at \(x = -2 \)? Give a reason for your answer.

3. Let \(f \) be a function with derivatives of all orders and for which \(f(2) = 7 \). When \(n \) is odd, the \(n \)th derivative of \(f \) at \(x = 2 \) is 0. When \(n \) is even and \(n \geq 2 \), the \(n \)th derivative of \(f \) at \(x = 2 \) is given by \(f^{(n)}(2) = \frac{(n-1)!}{3^n} \).
 a) Write the sixth-degree Taylor polynomial for \(f \) about \(x = 2 \).
 b) In the Taylor series for \(f \) about \(x = 2 \), what is the coefficient of \((x - 2)^2n \) for \(n \geq 1 \) ?
 c) Find the interval of convergence of the Taylor series for \(f \) about \(x = 2 \). Show the work that leads to your answer.

4. The function \(f \) is defined by the power series
 \[
 f(x) = -\frac{x}{2} + \frac{2x^2}{3} - \frac{3x^3}{4} + \cdots + \frac{(-1)^n nx^n}{n + 1} + \cdots
 \]
 for all real numbers \(x \) for which the series converges. The function \(g \) is defined by the power series
 \[
 g(x) = 1 - \frac{x}{2!} + \frac{x^2}{4!} - \frac{x^3}{6!} + \cdots + \frac{(-1)^n x^n}{(2n)!} + \cdots
 \]
 for all real numbers \(x \) for which the series converges.
 Find the interval of convergence of the power series for \(f \). Justify your answer.

5. The Maclaurin series for \(\ln \left(\frac{1}{1-x} \right) \) is \(\sum_{n=1}^{\infty} \frac{x^n}{n} \) with interval of convergence \(-1 \leq x < 1 \).
 a) Find the Maclaurin series for \(\ln \left(\frac{1}{1+3x} \right) \) and determine the interval of convergence.
 b) Find the value of \(\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \)
 c) Give a value of \(p \) such that \(\sum_{n=1}^{\infty} \frac{1}{n^p} \) diverges, but \(\sum_{n=1}^{\infty} \frac{1}{n^2p} \) converges. Give reasons why your value of \(p \) is correct.