\qquad

AP Series Problems

1. A function f is defined by $f(x)=\frac{1}{3}+\frac{2}{3^{2}} x+\frac{3}{3^{3}} x^{2}+\cdots+\frac{n+1}{3^{n+1}} x^{n}+\cdots$ for all x in the interval of convergence of the given power series. Find the interval of convergence for this power series. Show the work that leads to your answer.
2. The function f has a Taylor series about $x=2$ that converges to $f(x)$ for all x in the interval of convergence. The nth derivative of f at $x=2$ is given by $f^{(n)}(x)=\frac{(n+1)!}{3^{n}}$ for $n \geq 1$, and $f(2)=1$.
a) Write the first four terms and the general term of the Taylor series for f about $x=2$.
b) Find the radius of convergence for the Taylor series for f about $x=2$. Show the work that leads to your answer.
c) Let g be a functions satisfying $g(2)=3$ and $g^{\prime}(x)=f(x)$ for all x. Write the first four terms and the general term of the Taylor series for g about $x=2$.
d) Does the Taylor series for g as defined in part (c) converge at $x=-2$? Give a reason for your answer.
3. Let f be a function with derivatives of all orders and for which $f(2)=7$. When n is odd, the nth derivative of f at $x=2$ is 0 . When n is even and $n \geq 2$, the nth derivative of f at $x=2$ is given by $f^{(n)}(2)=\frac{(n-1)!}{3^{n}}$.
a) Write the sixth-degree Taylor polynomial for f about $x=2$.
b) In the Taylor series for f about $x=2$, what is the coefficient of $(x-2)^{2 n}$ for $n \geq 1$?
c) Find the interval of convergence of the Taylor series for f about $x=2$. Show the work that leads to your answer.
4. The function f is defined by the power series

$$
f(x)=-\frac{x}{2}+\frac{2 x^{2}}{3}-\frac{3 x^{3}}{4}+\cdots+\frac{(-1)^{n} n x^{n}}{n+1}+\cdots
$$

for all real numbers x for which the series converges. The function g is defined by the power series

$$
g(x)=1-\frac{x}{2!}+\frac{x^{2}}{4!}-\frac{x^{3}}{6!}+\cdots+\frac{(-1)^{n} x^{n}}{(2 n)!}+\cdots
$$

for all real numbers x for which the series converges.
Find the interval of convergence of the power series for f. Justify your answer.
5. The Maclaurin series for $\ln \left(\frac{1}{1-x}\right)$ is $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$ with interval of convergence $-1 \leq x<1$.
a) Find the Maclaurin series for $\ln \left(\frac{1}{1+3 x}\right)$ and determine the interval of convergence.
b) Find the value of $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$
c) Give a value of p such that $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ diverges, but $\sum_{n=1}^{\infty} \frac{1}{n^{2 p}}$ converges. Give reasons why your value of p is correct.

