AP Series Problems (Solutions)

1.

$\lim _{n \rightarrow \infty}\left|\frac{\frac{(n+2) x^{n+1}}{3^{n+2}}}{\frac{(n+1) x^{n}}{3^{n+1}}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+2)}{(n+1)} \frac{x}{3}\right|=\left|\frac{x}{3}\right|<1$
At $x=-3$, the series is $\sum_{n=0}^{\infty}(-1)^{n} \frac{n+1}{3}$, which diverges.
At $x=3$, the series is $\sum_{n=0}^{\infty} \frac{n+1}{3}$, which diverges.
Therefore, the interval of convergence is $-3<x<3$.
2.
(a) $f(2)=1 ; f^{\prime}(2)=\frac{2!}{3} ; f^{\prime \prime}(2)=\frac{3!}{3^{2}} ; f^{\prime \prime \prime}(2)=\frac{4!}{3^{3}}$

$$
\begin{gathered}
f(x)=1+\frac{2}{3}(x-2)+\frac{3!}{2!3^{2}}(x-2)^{2}+\frac{4!}{3!3^{3}}(x-2)^{3}+ \\
+\cdots+\frac{(n+1)!}{n!3^{n}}(x-2)^{n}+\cdots \\
=1+\frac{2}{3}(x-2)+\frac{3}{3^{2}}(x-2)^{2}+\frac{4}{3^{3}}(x-2)^{3}+ \\
+\cdots+\frac{n+1}{3^{n}}(x-2)^{n}+\cdots
\end{gathered}
$$

(b) $\lim _{n \rightarrow \infty}\left|\frac{\frac{n+2}{3^{n+1}}(x-2)^{n+1}}{\frac{n+1}{3^{n}}(x-2)^{n}}\right|=\lim _{n \rightarrow \infty} \frac{n+2}{n+1} \cdot \frac{1}{3}|x-2|$
$=\frac{1}{3}|x-2|<1$ when $|x-2|<3$
The radius of convergence is 3 .
(c) $g(2)=3 ; g^{\prime}(2)=f(2) ; g^{\prime \prime}(2)=f^{\prime}(2) ; g^{\prime \prime \prime}(2)=f^{\prime \prime}(2)$

$$
\begin{aligned}
& g(x)=3+(x-2)+\frac{1}{3}(x-2)^{2}+\frac{1}{3^{2}}(x-2)^{3}+ \\
&+\cdots+\frac{1}{3^{n}}(x-2)^{n+1}+\cdots
\end{aligned}
$$

(d) No, the Taylor series does not converge at $x=-2$
because the geometric series only converges on the
(d) No, the Taylor series does not converge at $x=-2$
because the geometric series only converges on the interval $|x-2|<3$.
$4:\left\{\begin{array}{l}1: \text { sets up ratio test } \\ 1: \text { computes limit } \\ 1: \text { conclusion of ratio test } \\ 1: \text { endpoint conclusion }\end{array}\right.$

1 : coefficients $\frac{f^{(n)}(2)}{n!}$ in first four terms
$3:$
1: powers of $(x-2)$ in first four terms 1: general term
$3:\left\{\begin{array}{l}1: \text { sets up ratio } \\ 1: \text { limit } \\ 1: \text { applies ratio test to } \\ \quad \begin{array}{l}\text { conclude radius of } \\ \text { convergence is } 3\end{array}\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { first four terms } \\ 1: \text { general term }\end{array}\right.$

1: answer with reason
3.
(a) $P_{6}(x)=7+\frac{1!}{3^{2}} \cdot \frac{1}{2!}(x-2)^{2}+\frac{3!}{3^{4}} \cdot \frac{1}{4!}(x-2)^{4}+\frac{5!}{3^{6}} \cdot \frac{1}{6!}(x-2)^{6}$
(b) $\frac{(2 n-1)!}{3^{2 n}} \cdot \frac{1}{(2 n)!}=\frac{1}{3^{2 n}(2 n)}$
(c) The Taylor series for f about $x=2$ is

$$
\begin{aligned}
f(x) & =7+\sum_{n=1}^{\infty} \frac{1}{2 n \cdot 3^{2 n}}(x-2)^{2 n} . \\
L & =\lim _{n \rightarrow \infty}\left|\frac{\frac{1}{2(n+1)} \cdot \frac{1}{3^{2(n+1)}}(x-2)^{2(n+1)}}{\frac{1}{2 n} \cdot \frac{1}{3^{2 n}}(x-2)^{2 n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{2 n}{2(n+1)} \cdot \frac{3^{2 n}}{3^{2} 3^{2 n}}(x-2)^{2}\right|=\frac{(x-2)^{2}}{9}
\end{aligned}
$$

$L<1$ when $|x-2|<3$.
Thus, the series converges when $-1<x<5$.
When $x=5$, the series is $7+\sum_{n=1}^{\infty} \frac{3^{2 n}}{2 n \cdot 3^{2 n}}=7+\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n}$,
which diverges, because $\sum_{n=1}^{\infty} \frac{1}{n}$, the harmonic series, diverges.
When $x=-1$, the series is $7+\sum_{n=1}^{\infty} \frac{(-3)^{2 n}}{2 n \cdot 3^{2 n}}=7+\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n}$,
which diverges, because $\sum_{n=1}^{\infty} \frac{1}{n}$, the harmonic series, diverges.
The interval of convergence is $(-1,5)$.
$3:\left\{\begin{array}{l}1: \text { polynomial about } x=2 \\ 2: \\ P_{6}(x) \\ \quad \begin{array}{l}\langle-1\rangle\end{array} \\ \quad \text { each incorrect term } \\ \langle-1\rangle \text { max for all extra terms, } \\ \\ \quad+\ldots, \text { misuse of equality }\end{array}\right.$

1: coefficient

5:
1 : sets up ratio
1: computes limit of ratio
: identifies interior of interval of convergence 1 : considers both endpoints
1 : analysis/conclusion for both endpoints
4.
(a) $\left|\frac{(-1)^{n+1}(n+1) x^{n+1}}{n+2} \cdot \frac{n+1}{(-1)^{n} n x^{n}}\right|=\frac{(n+1)^{2}}{(n+2)(n)} \cdot|x|$
$\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{(n+2)(n)} \cdot|x|=|x|$
The series converges when $-1<x<1$.
When $x=1$, the series is $-\frac{1}{2}+\frac{2}{3}-\frac{3}{4}+\cdots$
This series does not converge, because the limit of the individual terms is not zero.

When $x=-1$, the series is $\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\cdots$
This series does not converge, because the limit of the individual terms is not zero.

Thus, the interval of convergence is $-1<x<1$.
5.
(a) $\ln \left(\frac{1}{1+3 x}\right)=\ln \left(\frac{1}{1-(-3 x)}\right)$

$$
=\sum_{n=1}^{\infty} \frac{(-3 x)^{n}}{n} \text { or } \sum_{n=1}^{\infty}(-1)^{n} \frac{3^{n}}{n} x^{n}
$$

We must have $-1 \leq-3 x<1$, so interval of convergence is $-\frac{1}{3}<x \leq \frac{1}{3}$.
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}=\ln \left(\frac{1}{1-(-1)}\right)=\ln \left(\frac{1}{2}\right)$
(d) Some p such that $\frac{1}{2}<p \leq 1$ because the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ diverges for $p \leq 1$ and the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{2 p}}$ converges for $2 p>1$.
$2\left\{\begin{array}{l}1: \text { series } \\ 1: \text { interval of convergence }\end{array}\right.$

1: answer

1 : correct p
$3\left\{1:\right.$ reason why $\sum \frac{1}{n^{p}}$ diverges
1 : reason why $\sum \frac{1}{n^{2 p}}$ converges

