Convergence Practice

- 1. Which of the following series converge?
 - $I. \qquad \sum_{n=1}^{\infty} \frac{1}{n^2}$
 - II. $\sum_{n=1}^{\infty} \frac{1}{n}$
 - III. $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$
 - (A) I only
 - (B) III only
 - (C) I and II only
 - (**D**) I and III only
 - (E) I, II, and III
- **2.** What are all values of x for which the series $\sum_{n=1}^{\infty} \frac{(x-1)^n}{n}$ converges?
 - (A) $-1 \le x < 1$
 - **(B)** $-1 \le x \le 1$
 - (C) 0 < x < 2
 - **(D)** $0 \le x < 2$
 - **(E)** $0 \le x \le 2$
- **3.** Which of the following series converge?
 - I. $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{2n+1}$
 - II. $\sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{3}{2}\right)^n$
 - III. $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$
 - (A) I only
 - **(B)** II only
 - **(C)** III only
 - (**D**) I and III only
 - (E) I, II, and III

4. The complete interval of convergence of the series

$$\sum_{k=1}^{\infty} \frac{(x+1)^k}{k^2}$$

is:

- (A) 0 < x < 2
- **(B)** $0 \le x \le 2$
- (C) $-2 < x \le 0$
- **(D)** $-2 \le x < 0$
- **(E)** $-2 \le x \le 0$

5. What are all values of x for which the series

$$\sum_{n=1}^{\infty} \frac{(x+2)^n}{\sqrt{n}}$$

converges?

- (A) -3 < x < -1
- **(B)** $-3 \le x < -1$
- (C) $-3 \le x \le -1$
- **(D)** $-1 \le x < 1$
- **(E)** -1 ≤ x ≤ 1