DATE: \qquad

Convergence Practice

1. Which of the following series converge?
I. $\quad \sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges by p-semis test $(p=2>1)$
II. $\sum_{n=1}^{\infty} \frac{1}{n}$ dinges by p-genes test $(p=1)$
III. $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$ alternating genies test
(A) I only
$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$
(1) $\frac{1}{\sqrt{h}}>0$
(B) III only
(2) $\frac{1}{\sqrt{n}}>\frac{1}{\sqrt{n+1}}$
(C) I and II only
(3) $\lim _{h \rightarrow \infty} \frac{1}{\sqrt{n}}=0$
$\therefore \sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$ congas
(D) I and III only
(E) I, II, and III
alt.genes
2. What are all values of x for which the series $\sum_{n=1}^{\infty} \frac{(x-1)^{n}}{n}$ converges?
(A) $-1 \leq x<1$
(B) $-1 \leq x \leq 1$
k Ratio Test**
$\lim _{n \rightarrow \infty}\left|\frac{\frac{(x-1)^{n+1}}{n+1}}{\frac{(x-1)^{n}}{n}}\right|$
$\left\{\begin{array}{l}\text { comers }|x-1|<1 \\ -1<x-1<1 \\ 0<x<2\end{array}\right.$
$\frac{\text { check }}{x=2}, \frac{\text { endpts: }}{\sum_{n=1}^{\infty} \frac{(2-1)^{n}}{n}=\sum_{n=1}^{\infty} \frac{1}{n} \text { diverge by }} \begin{aligned} & \text { P-spertes } \\ & \text { so, } x=2 \text { not included }\end{aligned}$
(C) $0<x<2$
(D) $0 \leq x<2$
$=\lim _{n \rightarrow \infty}\left|\frac{(x-1)^{n+1}}{n+1} \cdot \frac{n}{(x-1)^{n}}\right|$
$0<x<2$ so, $x=2$ not included
$x=0, \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ comerare by alt. seine
(E) $0 \leq x \leq 2$
$=\lim _{n \rightarrow \infty}\left|(x-1) \frac{n}{n+1}\right|$
$=|x-1|$

$$
\begin{array}{ll}
\text { so } x=0 \\
\text { is included } & \text { (1) } \frac{1}{n}>\frac{1}{n+1} \\
\text { (o) } b^{2}
\end{array}
$$

3. Which of the following series converge?
I. $\quad \sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{2 n+1}$ I. alt. semis test
II. $\quad \sum_{n=1}^{\infty} \frac{1}{n}\left(\frac{3}{2}\right)^{n}$
III. $\quad \sum_{n=2}^{\infty} \frac{1}{n \ln n}$
(1) $\frac{1}{2 n+1}>0$
(2) $\frac{1}{2 n+1}>\frac{1}{2(n+1)+1}$
$\therefore \sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{2 n+1}$
$\frac{1}{2 n+1}>\frac{1}{2 n+3}$
(3) $\lim _{n \rightarrow \infty} \frac{1}{2 n+1}=0$
(A) I only
(B) II only
(C) III only
(D) I and III only
(E) I, II, and III
II. Ratio Test
$\lim _{n \rightarrow \infty}\left|\frac{1}{n+1} \cdot\left(\frac{3}{2}\right)^{n+1} \cdot \frac{n}{(3 / 2)^{n}}\right|$
$=\lim _{n \rightarrow \infty}\left|\frac{3 / 2(n)}{n+1}\right|$
$=\frac{3}{2}>1$, so $\sum_{n=1}^{\infty} \frac{1}{h}\left(\frac{3}{2}\right)^{n}$
III. Integuiltest
$\frac{1}{x \ln x}$ is cont, pos, and dec
$\int_{2}^{\infty} \frac{1}{x \ln x} d x$
$=\lim _{a \rightarrow \infty} \int_{z}^{a} \frac{1}{x \ln x} d x$
$=\left.\lim _{a \rightarrow \infty} \ln (\ln x)\right|_{2}\left\{\begin{array}{l}n=\frac{1}{x} d x \\ \int \frac{1}{u} d x \\ \ln x\end{array}\right.$
$=\lim _{a \rightarrow \infty}(\ln (\ln a)-\ln (\ln 2))$
$=\infty$ dinges
4. The complete interval of convergence of the series
is:

$$
\sum_{k=1}^{\infty} \frac{(x+1)^{k}}{k^{2}}
$$

Chuck endpts:

$$
x=0, \quad \sum_{n=1}^{\infty} \frac{(+1)^{n}}{n^{2}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

$$
\begin{aligned}
& \text { so, } x=0 \text { is } \\
& \text { cicluded }
\end{aligned}
$$

$$
\begin{aligned}
& \text { cawerges by } \\
& p-\operatorname{cin}+\frac{1}{} \\
& (p=2>1)
\end{aligned}
$$

$$
x=-2, \sum_{n=1}^{\infty} \frac{(-2+1)^{n}}{n^{2}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}
$$

converges by att.

$$
\text { (1) } \frac{1}{h^{2}}>0
$$

$$
-2 \leq x \leq 0
$$

$$
80
$$

$$
\text { (2) } \frac{1}{n^{2}}>\frac{1}{(n+1)^{2}}
$$

$$
\text { (3) } \lim _{h \rightarrow \infty} \frac{1}{x^{2}}=0
$$

5. What are all values of x for which the series

$$
\sum_{n=1}^{\infty} \frac{(x+2)^{n}}{\sqrt{n}}
$$

check undets:

$$
x=-1, \sum_{n=1}^{\infty} \frac{(-1+2)^{n}}{\sqrt{n}}=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \text { dwings }
$$

$$
\text { so } x=-1 \text { nod } \text { induded }^{t} \quad(p=1 / 2<1)
$$

$$
\begin{array}{r}
x=-3, \sum_{n=1}^{\infty} \frac{(-3+2)^{n}}{\sqrt{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}} \text { coverges } \\
\text { by alt } \\
\text { sencestest } \\
\text { b/c }
\end{array}
$$

$$
\begin{aligned}
& \text { so } x=-3 \\
& \text { is inclnded }
\end{aligned}
$$

$$
\text { (3) } \lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0
$$

$$
\begin{aligned}
& \text { converges? } \\
& \text { * Ratie Test* } \\
& \text { (A) }-3<x<-1 \\
& \lim _{n \rightarrow \infty}\left|\frac{(x+2)^{n+1}}{\sqrt{n+1}} \cdot \frac{\sqrt{n}}{(x+2)^{n}}\right| \\
& \text { (B) }-3 \leq x<-1 \\
& \text { (C) }-3 \leq x \leq-1 \\
& \text { (D) }-1 \leq x<1 \\
& \text { (E) }-1 \leq x \leq 1 \\
& =|x+2| \\
& |x+2|<1 \begin{array}{l}
\text { convergt. } \\
\text { bylutio } \\
\text { test }
\end{array} \\
& -12 x+2<1 \\
& -3<x<-1 \\
& -3 \leq x<-1 \\
& =\lim _{n \rightarrow \infty}\left|\frac{(x+2) \sqrt{n}}{\sqrt{n+1}}\right| \\
& \text { best }
\end{aligned}
$$

