Convergence Practice

- 1. Which of the following series converge?
 - $I. \qquad \sum_{n=1}^{\infty} \frac{1}{n^2}$
 - II. $\sum_{n=1}^{\infty} \frac{1}{n}$
 - III. $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$
 - (A) I only
 - (B) III only
 - (C) I and II only
 - (**D**) I and III only
 - (E) I, II, and III
- **2.** What are all values of x for which the series $\sum_{n=1}^{\infty} \frac{(x-1)^n}{n}$ converges?
 - (A) $-1 \le x < 1$
 - **(B)** $-1 \le x \le 1$
 - (C) 0 < x < 2
 - **(D)** $0 \le x < 2$
 - $(\mathbf{E}) \quad 0 \le x \le 2$
- **3.** Which of the following series converge?
 - I. $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{2n+1}$
 - II. $\sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{3}{2}\right)^n$
 - III. $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$
 - (A) I only
 - **(B)** II only
 - **(C)** III only
 - (**D**) I and III only
 - (E) I, II, and III

2002BC FRQ

- **4.** The Maclaurin series for $\ln\left(\frac{1}{1-x}\right)$ is $\sum_{n=1}^{\infty} \frac{x^n}{n}$ with interval of convergence $-1 \le x < 1$.
 - a) Find the Maclaurin series for $\ln \left(\frac{1}{1+3x} \right)$ and determine the interval of convergence.
 - **b**) Find the value of $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$
 - c) Give a value of p such that $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ converges, but $\sum_{n=1}^{\infty} \frac{1}{n^{2p}}$ diverges. Give reasons why your value of p is correct.
 - **d)** Give a value of p such that $\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges, but $\sum_{n=1}^{\infty} \frac{1}{n^{2p}}$ converges. Give reasons why your value of p is correct.