Convergence Practice

1. Which of the following series converge?

 I. \(\sum_{n=1}^{\infty} \frac{1}{n^2} \)

 II. \(\sum_{n=1}^{\infty} \frac{1}{n} \)

 III. \(\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} \)

 (A) I only
 (B) III only
 (C) I and II only
 (D) I and III only
 (E) I, II, and III

2. What are all values of \(x \) for which the series \(\sum_{n=1}^{\infty} \frac{(x-1)^n}{n} \) converges?

 (A) \(-1 \leq x < 1\)
 (B) \(-1 \leq x \leq 1\)
 (C) \(0 < x < 2\)
 (D) \(0 \leq x < 2\)
 (E) \(0 \leq x \leq 2\)

3. Which of the following series converge?

 I. \(\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{2n+1} \)

 II. \(\sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{3}{2} \right)^n \)

 III. \(\sum_{n=2}^{\infty} \frac{1}{n \ln n} \)

 (A) I only
 (B) II only
 (C) III only
 (D) I and III only
 (E) I, II, and III
4. The Maclaurin series for $\ln \left(\frac{1}{1-x} \right)$ is $\sum_{n=1}^{\infty} \frac{x^n}{n}$ with interval of convergence $-1 \leq x < 1$.

a) Find the Maclaurin series for $\ln \left(\frac{1}{1+3x} \right)$ and determine the interval of convergence.

b) Find the value of $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$

c) Give a value of p such that $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}$ converges, but $\sum_{n=1}^{\infty} \frac{1}{n^{2p}}$ diverges. Give reasons why your value of p is correct.

d) Give a value of p such that $\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges, but $\sum_{n=1}^{\infty} \frac{1}{n^{2p}}$ converges. Give reasons why your value of p is correct.