\qquad

Convergence Practice

1. Which of the following series converge?
I. $\quad \sum_{n=1}^{\infty} \frac{1}{n^{2}}$
II. $\quad \sum_{n=1}^{\infty} \frac{1}{n}$
III. $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$
(A) I only
(B) III only
(C) I and II only
(D) I and III only
(E) I, II, and III
2. What are all values of x for which the series $\sum_{n=1}^{\infty} \frac{(x-1)^{n}}{n}$ converges?
(A) $-1 \leq x<1$
(B) $-1 \leq x \leq 1$
(C) $0<x<2$
(D) $0 \leq x<2$
(E) $0 \leq x \leq 2$
3. Which of the following series converge?
I. $\quad \sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{2 n+1}$
II. $\quad \sum_{n=1}^{\infty} \frac{1}{n}\left(\frac{3}{2}\right)^{n}$
III. $\quad \sum_{n=2}^{\infty} \frac{1}{n \ln n}$
(A) I only
(B) II only
(C) III only
(D) I and III only
(E) I, II, and III

2002BC FRQ

4. The Maclaurin series for $\ln \left(\frac{1}{1-x}\right)$ is $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$ with interval of convergence $-1 \leq x<1$.
a) Find the Maclaurin series for $\ln \left(\frac{1}{1+3 x}\right)$ and determine the interval of convergence.
b) Find the value of $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$
c) Give a value of p such that $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{p}}$ converges, but $\sum_{n=1}^{\infty} \frac{1}{n^{2 p}}$ diverges. Give reasons why your value of p is correct.
d) Give a value of p such that $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ diverges, but $\sum_{n=1}^{\infty} \frac{1}{n^{2 p}}$ converges. Give reasons why your value of p is correct.
