AP[®] Calculus AB 2013 Free-Response Questions #### About the College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in 1900, the College Board was created to expand access to higher education. Today, the membership association is made up of more than 6,000 of the world's leading educational institutions and is dedicated to promoting excellence and equity in education. Each year, the College Board helps more than seven million students prepare for a successful transition to college through programs and services in college readiness and college success — including the SAT° and the Advanced Placement Program°. The organization also serves the education community through research and advocacy on behalf of students, educators, and schools. © 2013 The College Board. College Board, Advanced Placement Program, AP, AP Central, SAT, and the acorn logo are registered trademarks of the College Board. Admitted Class Evaluation Service and inspiring minds are trademarks owned by the College Board. All other products and services may be trademarks of their respective owners. Visit the College Board on the Web: www.collegeboard.org. Permission to use copyrighted College Board materials may be requested online at: www.collegeboard.org/inquiry/cbpermit.html. Visit the College Board on the Web: www.collegeboard.org. AP Central is the official online home for the AP Program: apcentral.collegeboard.org. - 1. On a certain workday, the rate, in tons per hour, at which unprocessed gravel arrives at a gravel processing plant is modeled by $G(t) = 90 + 45\cos\left(\frac{t^2}{18}\right)$, where t is measured in hours and $0 \le t \le 8$. At the beginning of the workday (t = 0), the plant has 500 tons of unprocessed gravel. During the hours of operation, $0 \le t \le 8$, the plant processes gravel at a constant rate of 100 tons per hour. - (a) Find G'(5). Using correct units, interpret your answer in the context of the problem. (b) Find the total amount of unprocessed gravel that arrives at the plant during the hours of operation on this workday. Do not write beyond this border. Unauthorized copying or reuse of any part of this page is illegal. Continue problem 1 on page 5. (c) Is the amount of unprocessed gravel at the plant increasing or decreasing at time t = 5 hours? Show the work that leads to your answer. (d) What is the maximum amount of unprocessed gravel at the plant during the hours of operation on this workday? Justify your answer. Do not write beyond this border. Unauthorized copying or reuse of any part of this page is illegal. - 2. A particle moves along a straight line. For $0 \le t \le 5$, the velocity of the particle is given by $v(t) = -2 + \left(t^2 + 3t\right)^{6/5} t^3$, and the position of the particle is given by s(t). It is known that s(0) = 10. - (a) Find all values of t in the interval $2 \le t \le 4$ for which the speed of the particle is 2. (b) Write an expression involving an integral that gives the position s(t). Use this expression to find the position of the particle at time t = 5. שווטר איזוכ טבאטווש נוווא טעועכזי. Unauthorized copying or reuse of any part of this page is illegal. Continue problem 2 on page 7. (c) Find all times t in the interval $0 \le t \le 5$ at which the particle changes direction. Justify your answer. (d) Is the speed of the particle increasing or decreasing at time t = 4? Give a reason for your answer. Do not write beyond this border. Unauthorized copying or rouse of any part of this page is illegal. ## NO CALCULATOR ALLOWED (c) Use a midpoint sum with three subintervals of equal length indicated by the data in the table to approximate the value of $\frac{1}{6} \int_0^6 C(t) dt$. Using correct units, explain the meaning of $\frac{1}{6} \int_0^6 C(t) dt$ in the context of the problem. (d) The amount of coffee in the cup, in ounces, is modeled by $B(t) = 16 - 16e^{-0.4t}$. Using this model, find the rate at which the amount of coffee in the cup is changing when t = 5. Do not write beyond this border. Unauthorized copying or reuse of any part of this page is illegal. ### NO CALCULATOR ALLOWED | t (minutes) | 0 | 1 | 2 | 3 | 4 | 5 | - 6 | |---------------|---|-----|-----|------|------|------|------| | C(t) (ounces) | 0 | 5.3 | 8.8 | 11.2 | 12,8 | 13.8 | 14.5 | - 3. Hot water is dripping through a coffeemaker, filling a large cup with coffee. The amount of coffee in the cup at time t, 0 ≤ t ≤ 6, is given by a differentiable function C, where t is measured in minutes. Selected values of C(t), measured in ounces, are given in the table above. - (a) Use the data in the table to approximate C'(3.5). Show the computations that lead to your answer, and indicate units of measure. (b) Is there a time t, $2 \le t \le 4$, at which C'(t) = 2? Justify your answer. Do not write beyond this border. Unauthorized copying or reuse of any part of this page is Illegal. Continue problem 3 on page 15. Graph of f' - 4. The figure above shows the graph of f', the derivative of a twice-differentiable function f, on the closed interval $0 \le x \le 8$. The graph of f' has horizontal tangent lines at x = 1, x = 3, and x = 5. The areas of the regions between the graph of f' and the x-axis are labeled in the figure. The function f is defined for all real numbers and satisfies f(8) = 4. - (a) Find all values of x on the open interval 0 < x < 8 for which the function f has a local minimum. Justify your answer. (b) Determine the absolute minimum value of f on the closed interval $0 \le x \le 8$. Justify your answer. Do not write beyond this border. Unauthorized copying or reuse of any part of this page is illegal. Continue problem 4 on page 17. 4 4 4 4 4 4 4 4 4 4 #### NO CALCULATOR ALLOWED (c) On what open intervals contained in 0 < x < 8 is the graph of f both concave down and increasing? Explain your reasoning. (d) The function g is defined by $g(x) = (f(x))^3$. If $f(3) = -\frac{5}{2}$, find the slope of the line tangent to the graph of g at x = 3. Do not write beyond this border. Unauthorized copying or reuse of any part of this page is illegal. GO ON TO THE NEXT PAGE. ביט זוטו אינוופ הפאחות חווצ החותבו. - 5. Let $f(x) = 2x^2 6x + 4$ and $g(x) = 4\cos(\frac{1}{4}\pi x)$. Let R be the region bounded by the graphs of f and g, as shown in the figure above. - (a) Find the area of R. Unauthorized copying or reuse of any part of this page is illegal. Continue problem 5 on page 19. (b) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line y = 4. (c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Write, but do not evaluate, an integral expression that gives the volume of the solid. Do not write beyond this border. Unauthorized copying or reuse of any part of this page is illegal. GO ON TO THE NEXT PAGE. Do not write beyond this border. # NO CALCULATOR ALLOWED - 6. Consider the differential equation $\frac{dy}{dx} = e^y (3x^2 6x)$. Let y = f(x) be the particular solution to the differential equation that passes through (1, 0). - (a) Write an equation for the line tangent to the graph of f at the point (1,0). Use the tangent line to approximate f(1,2). Do not write beyond this border. Unauthorized copying or reuse of any part of this page is illegal. Continue problem 6 on page 21. (b) Find y = f(x), the particular solution to the differential equation that passes through (1, 0). Do not write beyond this border. Unauthorized copying or reuse of any part of this page is illegal.