CALCULUS AB SECTION II, Part A

Time—45 minutes Number of problems—3

A graphing calculator is required for some problems or parts of problems.

- 1. The rate at which raw sewage enters a treatment tank is given by $E(t) = 850 + 715\cos\left(\frac{\pi t^2}{9}\right)$ gallons per hour for $0 \le t \le 4$ hours. Treated sewage is removed from the tank at the constant rate of 645 gallons per hour. The treatment tank is empty at time t = 0.
 - (a) How many gallons of sewage enter the treatment tank during the time interval $0 \le t \le 4$? Round your answer to the nearest gallon.
 - (b) For $0 \le t \le 4$, at what time t is the amount of sewage in the treatment tank greatest? To the nearest gallon, what is the maximum amount of sewage in the tank? Justify your answers.
 - (c) For $0 \le t \le 4$, the cost of treating the raw sewage that enters the tank at time t is (0.15 0.02t) dollars per gallon. To the nearest dollar, what is the total cost of treating all the sewage that enters the tank during the time interval $0 \le t \le 4$?

- 2. Let R and S in the figure above be defined as follows: R is the region in the first and second quadrants bounded by the graphs of $y = 3 x^2$ and $y = 2^x$. S is the shaded region in the first quadrant bounded by the two graphs, the x-axis, and the y-axis.
 - (a) Find the area of S.
 - (b) Find the volume of the solid generated when R is rotated about the horizontal line y = -1.
 - (c) The region *R* is the base of a solid. For this solid, each cross section perpendicular to the *x*-axis is an isosceles right triangle with one leg across the base of the solid. Write, but do not evaluate, an integral expression that gives the volume of the solid.

t (minutes)	0	4	8	12	16
H(t) (°C)	65	68	73	80	90

- 3. The temperature, in degrees Celsius ($^{\circ}$ C), of an oven being heated is modeled by an increasing differentiable function H of time t, where t is measured in minutes. The table above gives the temperature as recorded every 4 minutes over a 16-minute period.
 - (a) Use the data in the table to estimate the instantaneous rate at which the temperature of the oven is changing at time t = 10. Show the computations that lead to your answer. Indicate units of measure.
 - (b) Write an integral expression in terms of H for the average temperature of the oven between time t = 0 and time t = 16. Estimate the average temperature of the oven using a left Riemann sum with four subintervals of equal length. Show the computations that lead to your answer.
 - (c) Is your approximation in part (b) an underestimate or an overestimate of the average temperature? Give a reason for your answer.
 - (d) Are the data in the table consistent with or do they contradict the claim that the temperature of the oven is increasing at an increasing rate? Give a reason for your answer.

END OF PART A OF SECTION II

CALCULUS AB

SECTION II, Part B

Time—45 minutes

Number of problems—3

No calculator is allowed for these problems.

Graph of f

4. Let f be the function given by $f(x) = (\ln x)(\sin x)$. The figure above shows the graph of f for $0 < x \le 2\pi$.

The function g is defined by $g(x) = \int_1^x f(t) dt$ for $0 < x \le 2\pi$.

- (a) Find g(1) and g'(1).
- (b) On what intervals, if any, is g increasing? Justify your answer.
- (c) For $0 < x \le 2\pi$, find the value of x at which g has an absolute minimum. Justify your answer.
- (d) For $0 < x < 2\pi$, is there a value of x at which the graph of g is tangent to the x-axis? Explain why or why not.

- 5. Consider the differential equation $\frac{dy}{dx} = \frac{x}{y}$, where $y \neq 0$.
 - (a) The slope field for the given differential equation is shown below. Sketch the solution curve that passes through the point (3, -1), and sketch the solution curve that passes through the point (1, 2).

(Note: The points (3, -1) and (1, 2) are indicated in the figure.)

- (b) Write an equation for the line tangent to the solution curve that passes through the point (1, 2).
- (c) Find the particular solution y = f(x) to the differential equation with the initial condition f(3) = -1, and state its domain.
- 6. Let $g(x) = xe^{-x} + be^{-x}$, where b is a positive constant.
 - (a) Find $\lim_{x\to\infty} g(x)$.
 - (b) For what positive value of b does g have an absolute maximum at $x = \frac{2}{3}$? Justify your answer.
 - (c) Find all values of b, if any, for which the graph of g has a point of inflection on the interval $0 < x < \infty$. Justify your answer.

STOP

END OF EXAM